xy+x=20 是几元几次方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:27:06
xy+x=20 是几元几次方程
xy+x=20 是几元几次方程
xy+x=20 是几元几次方程
有x,y两个未知数
所以是2元的
出现xy的乘积
所以有二次方出现
是二元二次
二元二次
二元二次方程
二元二次
二元二次方程
二元二次
未知数有两个
xy的最高次方是2
二元一次方程:如果一个方程含有两个未知数,并且未知数的指数是1那么这个整式方程就叫做二元一次方程,有无穷个解。二元一次方程的一般形式:ax+by+c=0(a,b不为0)。
由此可知 此方程为二元二次
汗
有x,y两个未知数
所以是2元的
出现xy的乘积
所以有二次方出现
是二元二次
二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。
(1)有两组相...
全部展开
有x,y两个未知数
所以是2元的
出现xy的乘积
所以有二次方出现
是二元二次
二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。
(1)有两组相等的实数解。(2)有两组不相等的实数解;(3)没有实数解。
将②代入①,整理得。
二次方程③的判别式
(1)当,即a<2时,方程③有两个不相等的实数根,则原方程有不同的两组实数解。
(2)当,即a=2时,方程③有两个相等的实数根,则原方程有相同的两组实数解。
(3)当,即a>2时,方程③没有实数根,因而原方程没有实数解。
评析 由一个二元一次方程和一个二元二次方程组成的方程组,一般用代入法求解,即将方程组中的二元一次方程用含有一个未知数的代数式表示另一个未知数,然后代入二元二次方程中,从而化“二元”为“一元”,如此便得到一个一元二次方程。此时,方程组解的情况由此一元二次方程根的情况确定。比如,当时,由于一元二次方程有两个相等的实根,则此方程组有相同的两组实数解……诸如此类。
收起
二元二次方程
二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。
(1)有两组相等的实数解。(2)有两组不相等的实数解;(3)没有实数解。
将②代入①,整理得。
二次...
全部展开
二元二次方程
二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。
(1)有两组相等的实数解。(2)有两组不相等的实数解;(3)没有实数解。
将②代入①,整理得。
二次方程③的判别式
(1)当,即a<2时,方程③有两个不相等的实数根,则原方程有不同的两组实数解。
(2)当,即a=2时,方程③有两个相等的实数根,则原方程有相同的两组实数解。
(3)当,即a>2时,方程③没有实数根,因而原方程没有实数解。
评析 由一个二元一次方程和一个二元二次方程组成的方程组,一般用代入法求解,即将方程组中的二元一次方程用含有一个未知数的代数式表示另一个未知数,然后代入二元二次方程中,从而化“二元”为“一元”,如此便得到一个一元二次方程。此时,方程组解的情况由此一元二次方程根的情况确定。比如,当时,由于一元二次方程有两个相等的实根,则此方程组有相同的两组实数解……诸如此类。
收起
二元二次