已知sinθ=αsinφ,tanθ=btanφ,其中θ为锐角,求证:cos=根号内 a的平方减1除以b的平方减一
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:00:01
已知sinθ=αsinφ,tanθ=btanφ,其中θ为锐角,求证:cos=根号内 a的平方减1除以b的平方减一
已知sinθ=αsinφ,tanθ=btanφ,其中θ为锐角,求证:cos=根号内 a的平方减1除以b的平方减一
已知sinθ=αsinφ,tanθ=btanφ,其中θ为锐角,求证:cos=根号内 a的平方减1除以b的平方减一
tan²θ=b²·tan²φ=b²·Sin²φ/Cos²φ=b²·Sin²φ/(1-Sin²φ)①
∵Sinθ=aSinφ
∴Sin²φ=Sin²θ/a²②
将②代入①中并化简得:
tan²θ=b²·Sin²θ/(a²-Sin²θ)
∵tan²θ=Sin²θ/Cos²θ
∴Sin²θ/Cos²θ=b²·Sin²θ/(a²-Sin²θ)
∴1/Cos²θ=b²/(a²-Sin²θ)
1/Cos²θ=b²/(a²+1-Sin²θ-1)
1/Cos²θ=b²/(Cos²θ+a²-1)
化简得:Cosθ=√[(a²-1)/(b²-1)]
已知cosθ-根号5sinθ=根号6sin(φ-θ),求tanφ
求证 tanθ(1+sinθ )+sinθ /tanθ (1+sinθ )-sinθ =tanθ+sinθ/tanθsinθ
已知tanα=2,sinα
已知(sin^2α/sin^2β)+cos^2αcos^2θ=1,求证tan^2α=sin^2θtan^2β
已知sin²α/sin²β+cos²αcosθ=1,求证tan²α=sin²θtan²β
已知tanθ=3 求sinθ,
①利用公式sin(π-θ)=sinθ和sin(∏+θ)=-sinθ证明:sin(-θ)=-sinθ②证明tanθsinθ∕tanθ-sinθ=1+cosθ∕sinθ③已知sinα-2cosα+1=0,α≠kπ+π∕2,k∈z求:tan(3π-α)和1∕sin2α-sinαcosα+1的值
已知tanθ=2则sinθ+sinθcosθ-2cosθ=?
已知cosθ-√5sinθ=√6sin(φ-θ),求tanφ.(0
已知tanθ+sinθ=a,tanθ-sinθ=b,求证(a2-b2)2=16ab
已知sinα=2sinβ,tanα=3tanβ,求cosα
已知tanα/(tan-1)=-1,求sin^2+sinαcosα+2
已知5sinβ=sin(2α+β),求tan(α+β)/tanα
证明三角恒等式tanαsinα/(tanα-sinα)=(tanα+sinα)/tanαsinα
证明:(tanα*sinα)/(tanα-sinα)=(tanα+sinα)/(tanα*sinα)
证明:(tanα*sinα)/(tanα-sinα)=(tanα+sinα)/(tanα*sinα)
求证(tanα·sinα)/(tanα-sinα)=(tanα+sinα)/(tanα·sinα)
求证(tanαsinα)/(tanα-sinα)=(tanα+sinα)/(tanαsinα)