已知|3x+1|+(y-1)²=0,求(2x³+3x²)-(x³-3x²-y的二千零八次方)的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:42:02

已知|3x+1|+(y-1)²=0,求(2x³+3x²)-(x³-3x²-y的二千零八次方)的值
已知|3x+1|+(y-1)²=0,求(2x³+3x²)-(x³-3x²-y的二千零八次方)的值

已知|3x+1|+(y-1)²=0,求(2x³+3x²)-(x³-3x²-y的二千零八次方)的值
|3x+1|+(y-1)²=0,
那么3x+1=0 y-1=0
x= -1/3 y=1
(2x³+3x²)-(x³-3x²-y的二千零八次方)
=2x³+3x²-x³+3x²+y^2008
=x³+6x²+y^2008
= -1/27+6×1/9+1
=44/27

|3x+1|+(y-1)²=0
3x+1=0,y-1=0
x=-1/3,y=1
(2x³+3x²)-(x³-3x²-y的二千零八次方)
=-2/27+3+1/27+3-1
=-1/27+5

|3x+1|+(y-1)²=0
则 3x+1=0 y-1=0
x=-1/3 y=1
(2x³+3x²)-(x³-3x²-y的二千零八次方)
=2x³+3x²-x³+3x²+y的二千零八次方
=x³+6x²+y的二千零八次方
=-1/27+2/3+1
=44/27

因为|3x+1|+(y-1)²=0,所以3x+1=0,且y-1=0,得出x=-1/3,y=1
之后就好算了,带入就行了答案是,44/27.

由|3x+1|+(y-1)²=0得3x+1=0,y-1=0
x=-1/3,y=1
y^2008即表示y的二千零八次方
要求的式子=(2x³+3x²)-(x³-3x²-y^2008)=2x³+3x²-x³+3x²+1=x^3+6x^2+1
=(-1/3)^3+6*(-1/3)^2+1=-1/27+2/3+1=44/27