已知函数f(x)=8+2x-x2,g(x)=f(2-x2),试求g(x)的单调区间答案是g(x)在〔-1,0〕上为减函数,在〔0,1〕上为增函数,在〔1,+∞)上为减函数.我主要想要个过程.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:38:42
已知函数f(x)=8+2x-x2,g(x)=f(2-x2),试求g(x)的单调区间答案是g(x)在〔-1,0〕上为减函数,在〔0,1〕上为增函数,在〔1,+∞)上为减函数.我主要想要个过程.
已知函数f(x)=8+2x-x2,g(x)=f(2-x2),试求g(x)的单调区间
答案是g(x)在〔-1,0〕上为减函数,在〔0,1〕上为增函数,在〔1,+∞)上为减函数.
我主要想要个过程.
已知函数f(x)=8+2x-x2,g(x)=f(2-x2),试求g(x)的单调区间答案是g(x)在〔-1,0〕上为减函数,在〔0,1〕上为增函数,在〔1,+∞)上为减函数.我主要想要个过程.
g(x)单调递增区间为:[-1, 1];单调递减区间为:(-∞,-1),或(1, +∞)
f(x)=8+2x-x²
f(2-x²)=8+2(2-x²)- (2-x²)²
=8+4-2x²-(4-4x²+x^4)
=-x^4+2x² +8
=g(x)
若令x²=t,(t≥0)
则g(x)= -t² + 2t +8
=-(t²-2t) +8
=-(t-1)² + 9
显然,关于t的一元二次函数是一个开口向下的抛物线,
其对称轴为t=-1,根据其函数图像可得,当t≤1时,f(t)为单调递增函数;
当t≥1时,f(t)为单调递减函数.
因为,t=x² ≥0,所以,0≤t≤1时,即0≤x² ≤1时,即-1≤x ≤1时,g(x)单调递增函数;
同理,t≥1时,即x² ≥1时,即x≤-1,或x ≥1时,g(x)为单调递减函数.
原函数定义域既然为R,为什么你的答案没有区间(-∞,-1)?
还有,你的题目,是否如我所写的那样!你写的,关系根本不太清楚……