三角形ABC的内角A.B.C的对边分别为a.b.c,已知A-C=90度,a+c=根号2乘以b,求C
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 02:40:57
三角形ABC的内角A.B.C的对边分别为a.b.c,已知A-C=90度,a+c=根号2乘以b,求C
三角形ABC的内角A.B.C的对边分别为a.b.c,已知A-C=90度,a+c=根号2乘以b,求C
三角形ABC的内角A.B.C的对边分别为a.b.c,已知A-C=90度,a+c=根号2乘以b,求C
sinA+sinC=√2 sinB
sin(90+C)+sinC=√2 sin(180-C-90-C)
sinC+cosC=√2 cos2C
sin(C+45)=sin(90-2C)
C=15
sinA+sinC=√2 sinB
sin(90+C)+sinC=√2 sin(180-C-90-C)
sinC+cosC=√2 cos2C
sin(C+45)=sin(90-2C)
所以C﹢45º=90º-2C,即C=15º
或C+45º+90º-2C=180º(舍)
所以C=15º
a+c=√2b.
sinA+sinC=√2sinB(1)
A-C=90
sinA=sin(C+90)=cosC(2)
把(2) 代入(1)
cosC+sinC=√2sinB
√2(sin45°cosC+cos45°sinC)=√2sinB
sin45°=cos45°=√2/2 √2/2 * √2 =1 ...
全部展开
a+c=√2b.
sinA+sinC=√2sinB(1)
A-C=90
sinA=sin(C+90)=cosC(2)
把(2) 代入(1)
cosC+sinC=√2sinB
√2(sin45°cosC+cos45°sinC)=√2sinB
sin45°=cos45°=√2/2 √2/2 * √2 =1 所以那个等式成立的。
√2(sin45°cosC+cos45°sinC)=√2sinB
sin45°cosC+cos45°sinC=sinB {sin(a+b)=sina*cosb+cosa*sinb}
sin(45°+C)=sinB
C+45°=B 或 B+C+45°=180
A-C=90° 所以 A是钝角。 C是锐角
所以 在B+C+45°=180 中 B+C=135° C=45° B=90°、 不符合题意 舍去
A-C=90° A+B+C=180°
这两条解得。B+2C=90°
C+45°=B
解得C=15°
收起
A=120:B=C=30
A-C=90度,即A=C+90度
所以sinA=cosC,cosA=-sinC
a+c=根号2乘以b,则:
(a+c)/b=根号2
(sinA+sinC)/sinB=根号2
(cosC+sinC)/sin(A+C)=根号2
(cosC+sinC)/(sinAcosC+cosAsinC)=根号2
(cosC+sinC)/(cos^2C-sin^...
全部展开
A-C=90度,即A=C+90度
所以sinA=cosC,cosA=-sinC
a+c=根号2乘以b,则:
(a+c)/b=根号2
(sinA+sinC)/sinB=根号2
(cosC+sinC)/sin(A+C)=根号2
(cosC+sinC)/(sinAcosC+cosAsinC)=根号2
(cosC+sinC)/(cos^2C-sin^2C)=根号2
cosC-sinC=√2/2,两边平方得:
1-sin2C=1/2
sin2C=1/2
因为A-C=90度,A+C<180,即90+2C<180,C<45,2C<90
所以2C=30度
C=15度
收起
A – C = π/2 => A = C + π/2 => B = π - A - C = π/2 - 2C ,a + c = √2b ,由正弦定理可得 a/sinA = b/sinB = c/sinC => sinA + sinC = √2sinB => sin(C + π/2) + sinC = √2sin(π/2 - 2C) = √2cos2C => cosC + sinC = √2cos2...
全部展开
A – C = π/2 => A = C + π/2 => B = π - A - C = π/2 - 2C ,a + c = √2b ,由正弦定理可得 a/sinA = b/sinB = c/sinC => sinA + sinC = √2sinB => sin(C + π/2) + sinC = √2sin(π/2 - 2C) = √2cos2C => cosC + sinC = √2cos2C = √2(cosC)^2 - √2(sinC)^2 => cosC – sinC = √2/2 => 1 – 2cosCsinC = 1/2 => sin2C = 1/2 => C = π/12 。
收起
由A-C=90°,得A=C+90°,B=π-(A+C)=90°-2C(事实上0°<C<45°),
由a+c=b,根据正弦定理有:sinA+sinC=,∴sin(90°-2C),
即cosC+sinC=(cosC+sinC)(cosC-sinC),
∵cosC+sinC≠0,∴cosC-sinC=,C+45°=60°,∴C=15°.