已知函数f(x=x+a^2/x,g(x)=lnx.其中a>0 )若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值(2)若对任意的x1 x2属于【1,e】都有F(x1>=g(x2)成立,求实数a的取值范围g(x)=x+lnx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:59:09

已知函数f(x=x+a^2/x,g(x)=lnx.其中a>0 )若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值(2)若对任意的x1 x2属于【1,e】都有F(x1>=g(x2)成立,求实数a的取值范围g(x)=x+lnx
已知函数f(x=x+a^2/x,g(x)=lnx.其中a>0 )若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值
(2)若对任意的x1 x2属于【1,e】都有F(x1>=g(x2)成立,求实数a的取值范围
g(x)=x+lnx

已知函数f(x=x+a^2/x,g(x)=lnx.其中a>0 )若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值(2)若对任意的x1 x2属于【1,e】都有F(x1>=g(x2)成立,求实数a的取值范围g(x)=x+lnx
1)由题,可知
f‘(x)=-a²/x²+1,g’(x)=1/x
∴h‘(x)=f'(x)+g'(x)=-a²/x²+1/x+1
又x=1是函数h(x)的极值点
∴h’(x)=-a²+2=0
∴a=√2或a=-√2
经检验,a=√2或a=-√2均符合题意.
2)易知,当x∈[1,e]时
g(x)=lnx∈[0,1]
又f(x)≥g(x)
∴f(x)≥g(x)max=1
即x+a²/x≥1
由基本不等式,有
x+a²/x≥2√(x·a²/x)=2lal
∴2lal≥1
a≤1/2或a≥-1/2
即a∈(-∞,1/2]∪[1/2,+∞)

已知函数f(x)=2x-a,g(x)=x^2+1.G(x)=f(x)/g(x),H(x)=f(x)·g(x)(1) 当x∈[-1,1],求使G(x) 已知函数f(x)=x^+ax,g(x)=2^x-a,且1/2 已知函数f(x)=x²,g(x)=-af²(x)+(2a-1)f(x)+1(a 已知函数f(x)=log2(x^2-x),g(x)=log2(ax-a).求的f(x)定义域 已知函数f(x)=a-2/(a的x次方+1),g(x)=1/(f(x)-a) 已知函数f(X)=2-X^2.g(x)=x.若定义函数F(X)=min(F(X),G(x)),则F(x)的最大值 已知函数f(x)=x-lnx,g(x)=lnx/x,求证f(x)>g(x)+1/2 已知函数f(x)=4-|x|,g(x)=x^2-2x,F(x)=min{f(x),g(x)},其中min{a,b}={a(ab)}则函数y=F(x) 已知函数f(x)=(x+1),g(x)=(1-x)(a>0且a不等于1) (1)求f(x)已知函数f(x)=(x+1),g(x)=(1-x)(a>0且a不等于1) (1)求f(x)+g(x)的定义域;(2)判断函数f(x)+g(x)的奇偶性,并说明理由 已知函数f(x)是偶函数,g(x)为奇函数,且f(x)-g(x)=x²+x-2,则f(x)= ,g(x)= 已知定义在R上的函数f(x),g(x)满足f(x)/g(x)=a^x,且f'(x)g(x) 已知函数f(x)=x^2-x+a(a 已知函数f(x)=lg(x+1),g(x)=2lg(2x+a).(1)当a=-1时,求函数F(x)=f(x)+g(x)的定义域; (2)若不等式...已知函数f(x)=lg(x+1),g(x)=2lg(2x+a).(1)当a=-1时,求函数F(x)=f(x)+g(x)的定义域;(2)若不等式2f(x)小于等于g(x)对任意x 已知函数f(x)=x^2+2/x+alnx,a∈R记函数g(x)=x^2f'(x),若函数g(x)的最小值为-2-8根号2,求函数f(x)的解析式. 已知函数f(x)=|x+1|,g(x)=2|x|+a (1)当a=0时,解不等式f(x)>=g(x) (2)若存在x属于R,使得f(x)>=g(x)成立 已知函数f(x)=loga(1-x),g(x)=loga(x+1)(a>0,且a≠1),求函数F()已知函数f(x)=loga(1-x),g(x)=loga(x+1)(a>0,且a≠1),1、求函数F(x)=f(x)+g(x)的定义域;2、若函数G(x)=f(x)-g(x),b,c,∈(-1,1),求证:G(b)+G(c)=G(b+c/1+bc) 已知f(x)=2x写出函数f(x)的反函数g(x)及定义域 已知函数f(x)=|x+1|,g(x)=2|x|+a (1)当a=0时,解不等式f(x)>=g(x) (2)若存在x属于R,使得f(x)>=g(x)成立已知函数f(x)=|x+1|,g(x)=2|x|+a(1)当a=0时,解不等式f(x)>=g(x)(2)若存在x属于R,使得f(x)>=g(x)成立,求实数a的