已知an是为正数的等比数列,a1=1,a5=256,Sn为等差数列bn的前n项和,b1=2,5S5=2S81.求an和bn的通项公式2.设Tn=a1b1++a2b2+.+anbn 求Tn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:37:54
已知an是为正数的等比数列,a1=1,a5=256,Sn为等差数列bn的前n项和,b1=2,5S5=2S81.求an和bn的通项公式2.设Tn=a1b1++a2b2+.+anbn 求Tn
已知an是为正数的等比数列,a1=1,a5=256,Sn为等差数列bn的前n项和,b1=2,5S5=2S8
1.求an和bn的通项公式
2.设Tn=a1b1++a2b2+.+anbn 求Tn
已知an是为正数的等比数列,a1=1,a5=256,Sn为等差数列bn的前n项和,b1=2,5S5=2S81.求an和bn的通项公式2.设Tn=a1b1++a2b2+.+anbn 求Tn
1) {an}为等比数列,a1=1,a5=256,
令an=a1q^(n-1)=q^(n-1),
=> q=(a5/a1)^(1/4)=±4
∵an是为正数的等比数列
∴q=4,an=4^(n-1);
令bn=b1+(n-1)d=2+(n-1)d,
=> Sn=b1n+n(n-1)d/2=2n+n(n-1)d/2,
=> S5=10+10d,S8=16+28d,
5S5=2S8,
=> d=3,
=> bn=2+3(n-1)=3n-1
2)Tn=2×4^0+5×4^1+..+(3n-1)×4^(n-1)
∴4Tn=2×4^1+5×4^2+..+(3n-4)×4^(n-1)+(3n-1)×4^n
两式相减得:-3Tn=2×4^0+3×(4^1+4^2+...+4^(n-1))-(3n-1)×4^n
=2+3×4×[1-4^(n-1)]/(1-4)-(3n-1)×4^n
=2-4+4^n-(3n-1)×4^n
=-2+(2-3n)×4^n
∴Tn=2/3+(3n-2)/3×4^n
明教为您解答,
请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!