如图,已知角ACB=90度,AC=BC,AD=BE,角CAD=角CBE,BD:CD=1:2,角BDC=135度,求sin角BED.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:35:48

如图,已知角ACB=90度,AC=BC,AD=BE,角CAD=角CBE,BD:CD=1:2,角BDC=135度,求sin角BED.
如图,已知角ACB=90度,AC=BC,AD=BE,角CAD=角CBE,BD:CD=1:2,角BDC=135度,求sin角BED.

如图,已知角ACB=90度,AC=BC,AD=BE,角CAD=角CBE,BD:CD=1:2,角BDC=135度,求sin角BED.
∵AC=BC,AD=BE,∠CAD=∠CBE,
∴△ADC≌△BEC
∴DC=EC,∠1=∠2.
∵∠1+∠BCD=90°,
∴∠2+∠BCD=90°.
∴△DCE是等腰直角三角形;
∵△DCE是等腰直角三角形.
∴∠CDE=45°.
∵∠BDC=135°,
∴∠BDE=90°
∵BD:CD=1:2,
设BD=x,则CD=2x,DE=2x*(根号2)
,BE=3x.
∴sin∠BED=BD /BE=1:3
∠1=∠ACD ∠2=∠BCE

∵△ADC全等△BCE,........不懂了

证明:(1)∵AC=BC,AD=BE,∠CAD=∠CBE,

∴△ADC≌△BEC

∴DC=EC,∠1=∠2.

∵∠1+∠BCD=90°,

∴∠2+∠BCD=90°.

∴△DCE是等腰直角三角形;

(2)∵△DCE是等腰直角三角形.

∴∠CDE=45°.

∵∠BDC=135°,

∴∠BDE=90°

∵BD:CD=1:2,

设BD=x,则CD=2x,DE=2√2 x,BE=3x.

∴sin∠BED=BD /BE   =1  /3 

---------------------------

1/3。 过程如下:因为角ACB=90度,AC=BC,AD=BE,所以有△ACD≌△BCE.所以DC=CE.所以角ACD=角BCE.
又因为角ACB=90°所以角DCE=90°所以角CDE=45°又因为角BDC=135°,所以角BDE=90°,DE²=CD²+CE².因为BD:CD=1:2,所以设BD=x,CD=2x.所以D...

全部展开

1/3。 过程如下:因为角ACB=90度,AC=BC,AD=BE,所以有△ACD≌△BCE.所以DC=CE.所以角ACD=角BCE.
又因为角ACB=90°所以角DCE=90°所以角CDE=45°又因为角BDC=135°,所以角BDE=90°,DE²=CD²+CE².因为BD:CD=1:2,所以设BD=x,CD=2x.所以DE=2×2½×x.BE=3x.所以sin角BED=BD/BE=1/3.

收起

如图,已知:在三角形abc中,角acb=90度,AC=BC,AD平分∠CAB,交BC于D,求证:ab=ac+cd 如图,已知:在三角形abc中,角acb=90度,AC=BC,AD平分∠CAB,交BC于D,求证:ab=ac+cd 如图,已知在Rt三角形ABC中,角ACB=90°,AC=12,BC=5, 已知:如图,三角形ABC中,角ACB=2角B,BC=2AC,求证:角A=90度 已知,如图,在三角形ABC中,角ACB=90度,AE=AC,BD=BC,求证:角DCE=45° 如图,三角形abc中,bc=ac=4,角acb=120度 如图,已知三角形abc中,角acb=90度,e是bc延长线上的一点,d为ac边上的一点,ae=bd,且ce=cd.求证bc=ac. 已知,如图,在RT三角形ABC中,角ACB=90度,AC=BC,D为BC中点,CE垂直AD于E,BF平行AC交CE的延长线于点F,求证AB垂直平分DF. 如图,在Rt三角形ABC中,角ACB=90度,AC=BC=6 已知:如图,RT三角形ABC中,角ACB=90度,以AC为直径的半圆O交AB于BC的中点.求证:直线EF式半圆O的切线.已知:如图,RT三角形ABC中,角ACB=90度,以AC为直径的半圆O交AB于F,E是BC的中点。求证:直线EF 如图,AC=BC,角ACB=90,AD平分角CAB,试证明:AC+CD=AB 已知:如图,在三角形ABC中,角ACB=90,AC=BC,CD//AB,且AB=AD.求证:角BAC=3角CAD 已知,如图,点,B,C,D在同一条直线上,角ACB=角ECD=60度,AC=BC,EC=DC,连接BE,AD, 2已知,如图,△ABC中,角∠ACB=90°,AC=BC,D是AB的中点,AE=CF,求证DE⊥DF. 如图,已知在Rt三角形ABC中 角ACB=90°,AB=4分别以AC BC为半径 已知,如图,在等腰直角三角形abc中,角acb=90度,ac=bc,点d是三角形abc内一点且ad=ac,若角dac=30度,求证bd=cd 已知,如图,在三角形ABC中,AC=BC,角ACB=90度,D是AC上一点,AE垂直BD,交BD的延长线于点E,且AE=2分之1BD 如图,已知在三角形ABC中,角A等于90度,AB=AC,CD平分角ACB,DE垂直BC于E,若BC=15CM,则角DEB的周长为多少cm