若S=A(1,1)+A(2,2)+A(3,3)+A(4,4)+.A(2009,2009),则S的个位数是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 17:34:45
若S=A(1,1)+A(2,2)+A(3,3)+A(4,4)+.A(2009,2009),则S的个位数是
若S=A(1,1)+A(2,2)+A(3,3)+A(4,4)+.A(2009,2009),则S的个位数是
若S=A(1,1)+A(2,2)+A(3,3)+A(4,4)+.A(2009,2009),则S的个位数是
A(1,1)=1
A(2,2)=2
A(3,3)=6
A(4,4)=24
n≥5时,A(n,n)=A(5,5)*A(n,n-5)=A(n,n-5)*120, A(n,n)的个位数都是0
S=A(1,1)+A(2,2)+A(3,3)+A(4,4)+.A(2009,2009)
=1+2+6+24+120*[A(5,0)+A(6,1)+A(7,2)++.A(2009,2004)]
=120*[A(5,0)+A(6,1)+A(7,2)++.A(2009,2004)]+33
所以,S的个位数是3