如图已知,三角形ABC内接于圆o,弦BC所对的劣弧为120度角ABC,角ACB的平分线BD,CE分别交AC于D交AB于E,BD,CE相交于点F1,求tan∠EFB的值2,求证:EF=DF3,当BF=3EF,且线段BF,CF的长是关于x的方程x2-(2m+6)x+2m=0(
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:25:56
如图已知,三角形ABC内接于圆o,弦BC所对的劣弧为120度角ABC,角ACB的平分线BD,CE分别交AC于D交AB于E,BD,CE相交于点F1,求tan∠EFB的值2,求证:EF=DF3,当BF=3EF,且线段BF,CF的长是关于x的方程x2-(2m+6)x+2m=0(
如图已知,三角形ABC内接于圆o,弦BC所对的劣弧为120度角ABC,角ACB的平分线BD,CE分别交AC于D交AB于E,
BD,CE相交于点F
1,求tan∠EFB的值
2,求证:EF=DF
3,当BF=3EF,且线段BF,CF的长是关于x的方程x2-(2m+6)x+2m=0(m大于0)的两个实数根时,求AB的长.
如图已知,三角形ABC内接于圆o,弦BC所对的劣弧为120度角ABC,角ACB的平分线BD,CE分别交AC于D交AB于E,BD,CE相交于点F1,求tan∠EFB的值2,求证:EF=DF3,当BF=3EF,且线段BF,CF的长是关于x的方程x2-(2m+6)x+2m=0(
∵劣弧BC的度数为120°
∴∠BAC=60°
∴∠ABC+∠ACB=120°
∵BD平分∠ABC,CE平分∠ACB
∴∠CBD+∠ECB=12(∠ABC+∠ACB)=60°
∴∠CFD=60°
∴∠BFE=60°
∴cot∠BFE=cot60°=33;
(2)证明:在BC上截取BM=BE,连接MF
∵∠MBF=∠EBF,BF=BF
∴△BFM≌△BFE
∴MF=EF,∠BFM=∠BFE=60°
∴∠CFM=180-60-60=60°=∠CFD
∵CF=CF,∠MCF=∠DCF
∴△CMF≌△CDF
∴MF=EF
∴EF=DF;
过E作EN∥MF,那么∠FEN=∠CFM=∠EFN=60°
∴△EFN是等边三角形
∴EF=EN=FN
∵BF=3FD=3EF
∴BN=2EF
∵∠ABD=∠CBD,∠BNE=∠BFC=180-60=120°
∴△BFC∽△BNE
∴BN:EN=BF:CF
即2EF:EF=BF:CF
∴BF=2CF=3EF
∴CF=32EF
设EF=2k,那么BF=6k,CF=3k,由题意可得:
6k+3k=2m+618k2=2m2
解得:k=2
∴BF=12,CF=6,EF=4
过E作EH⊥BD于H
∴EH=EF•sin60°=23
∴FH=2
∴BH=BF-2=10
直角三角形BEH中,根据勾股定理可得:BE=47
∵∠A=∠BFE=60°,∠FBE=∠ABD
∴△FBE∽△ABD
∴BE:BF=BD:AB
∵BE=47,BF=12,BD=BF+FD=16
∴AB=4877.
1、从点A 拉条直线过圆心 , 于是 A+B+C=180 A+1/2B+1/2C=120 得 角A=60度。
角EFB+1/2 角B+角BEF =角EFB+1/2 角B+角A+1/2 角C=180度 于是 角EFB=180度-60度-1/2(180-60 )=60度 tg60度 =根3
2、以BD ,CE为对称轴分别作 FH 交BC于H 作FL 叫...
全部展开
1、从点A 拉条直线过圆心 , 于是 A+B+C=180 A+1/2B+1/2C=120 得 角A=60度。
角EFB+1/2 角B+角BEF =角EFB+1/2 角B+角A+1/2 角C=180度 于是 角EFB=180度-60度-1/2(180-60 )=60度 tg60度 =根3
2、以BD ,CE为对称轴分别作 FH 交BC于H 作FL 叫BC于L 然后 角BFC=120 角BFH=60度 角CFL=60度 ,于是可以得到 FH和FL是同一条线 于是 对应的 EF=DF
3、各种根号 各种字母。。。
收起
(1)∵劣弧BC的度数为120°
∴∠BAC=60°
∴∠ABC+∠ACB=120°
∵BD平分∠ABC,CE平分∠ACB
∴∠CBD+∠ECB=
1
2
(∠ABC+∠ACB)=60°
∴∠CFD=60°
∴∠BFE=60°
∴cot∠BFE=cot60°=
3
3
;...
全部展开
(1)∵劣弧BC的度数为120°
∴∠BAC=60°
∴∠ABC+∠ACB=120°
∵BD平分∠ABC,CE平分∠ACB
∴∠CBD+∠ECB=
1
2
(∠ABC+∠ACB)=60°
∴∠CFD=60°
∴∠BFE=60°
∴cot∠BFE=cot60°=
3
3
;
(2)证明:在BC上截取BM=BE,连接MF
∵∠MBF=∠EBF,BF=BF
∴△BFM≌△BFE
∴MF=EF,∠BFM=∠BFE=60°
∴∠CFM=180-60-60=60°=∠CFD
∵CF=CF,∠MCF=∠DCF
∴△CMF≌△CDF
∴MF=EF
∴EF=DF;
(3)过E作EN∥MF,那么∠FEN=∠CFM=∠EFN=60°
∴△EFN是等边三角形
∴EF=EN=FN
∵BF=3FD=3EF
∴BN=2EF
∵∠ABD=∠CBD,∠BNE=∠BFC=180-60=120°
∴△BFC∽△BNE
∴BN:EN=BF:CF
即2EF:EF=BF:CF
∴BF=2CF=3EF
∴CF=
3
2
EF
设EF=2k,那么BF=6k,CF=3k,由题意可得:
6k+3k=2m+618k2=2m2
解得:k=2
∴BF=12,CF=6,EF=4
过E作EH⊥BD于H
∴EH=EF•sin60°=2
3
∴FH=2
∴BH=BF-2=10
直角三角形BEH中,根据勾股定理可得:BE=4
7
∵∠A=∠BFE=60°,∠FBE=∠ABD
∴△FBE∽△ABD
∴BE:BF=BD:AB
∵BE=4
7
,BF=12,BD=BF+FD=16∴AB=
487
7
收起
有无过原点的线?无就做没有弦BC所对的劣弧为120度,什么意思?我也不知道角BAC等于120度,两条平分线,所以角CBF加角BCF等于30度。角BFC等于150度,角CFD等于30度,角CFD等于角BFE,tan角BFE等于三分之根号三。由背的定理得。谢谢后两问呢第一问错了!!我刚发现,角BAC为60度,不好意思啊,结果应为根号三!! 在BC上截取BP=BE,连接PF 先证明△BEF≌△BPF...
全部展开
有无过原点的线?无就做
收起