如图 在三角形abc中角BAC=45°AD垂直BC于点D,已知BD=6 CD=4 则高AD为多少
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:41:26
如图 在三角形abc中角BAC=45°AD垂直BC于点D,已知BD=6 CD=4 则高AD为多少
如图 在三角形abc中角BAC=45°AD垂直BC于点D,已知BD=6 CD=4 则高AD为多少
如图 在三角形abc中角BAC=45°AD垂直BC于点D,已知BD=6 CD=4 则高AD为多少
虽然没见到图,但应该是
设高AD为h tanB=h/6 tanC=h/4
tan(B+C)=tan(180-45)=tan135=-1=(h/6+h/4)/(1-h/6*h/4)
所以h*h-10h-24=0
解得h=12或-2(舍)
h=12
不知道你们正切求和学没学
楼上的说的不对,你学过数学吗。没看见有角的度数吗。房主急不急,如果不急我帮你想,你加我好友(百度的),先给分行不行。
其实只知道三角形的一条边和一个角
求不出来的
因为AD垂直BC于点D
所以角ADB=90度
因为角DAB=45度
所以三角形ABD是等腰直角三角形
tan(a+b)=(tana+tanb)/(1-tanatanb)
BD=6, CD=4, AD=x
tan45=1=(tana+tanb)/(1-tanatanb)
=(6/x+4/x)/(1-6/x*4/x)
1-(6/x)(4/x)=6/x+4/x
x^2-10x-24=0
AD=x=(10+(196^(1/2))/2 =12
根据 余弦定理 cos45 = AB平方+AC平方-BC平方(100)/2*AB*AC (1)式
AB平方 - BD平方(36) = AD平方 = AC平方 - CD平方 (16)
AB平方 - AC平方 = 20 (2)式
联立(1)(2)式 将AB AC解出来 那么在根据勾股定理 将AD求出来
不会解方程的话 你在告诉我 我帮你解 这是思路
给我分吧 ...
全部展开
根据 余弦定理 cos45 = AB平方+AC平方-BC平方(100)/2*AB*AC (1)式
AB平方 - BD平方(36) = AD平方 = AC平方 - CD平方 (16)
AB平方 - AC平方 = 20 (2)式
联立(1)(2)式 将AB AC解出来 那么在根据勾股定理 将AD求出来
不会解方程的话 你在告诉我 我帮你解 这是思路
给我分吧 我很需要
收起