已知集合A{x|-x2+3x+10≥0},B={x|m+1≤x≤2m-1},若A∩B≠空集,则m的取值范围是.答案是〔2,4〕我不理解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:06:09

已知集合A{x|-x2+3x+10≥0},B={x|m+1≤x≤2m-1},若A∩B≠空集,则m的取值范围是.答案是〔2,4〕我不理解
已知集合A{x|-x2+3x+10≥0},B={x|m+1≤x≤2m-1},若A∩B≠空集,则m的取值范围是.
答案是〔2,4〕
我不理解

已知集合A{x|-x2+3x+10≥0},B={x|m+1≤x≤2m-1},若A∩B≠空集,则m的取值范围是.答案是〔2,4〕我不理解
A
x^2-3x-10

解A中的不等式,可求得-2≤x≤5
所以A表示{x|-2≤x≤5}
又因为A∩B≠空集
所以A、B有公共部分
你可以在数轴上画出A的部分,然后求出B的范围。
不过要注意B中的m+1≤2m-1这个条件(这个不等式的解是m≥2)
算了,都答到这份上了干脆连下面的也一起说了。
你先在数轴上画出A的范围,然后看图。
因为B={x|m+1≤x≤...

全部展开

解A中的不等式,可求得-2≤x≤5
所以A表示{x|-2≤x≤5}
又因为A∩B≠空集
所以A、B有公共部分
你可以在数轴上画出A的部分,然后求出B的范围。
不过要注意B中的m+1≤2m-1这个条件(这个不等式的解是m≥2)
算了,都答到这份上了干脆连下面的也一起说了。
你先在数轴上画出A的范围,然后看图。
因为B={x|m+1≤x≤2m-1},所以2m-1<-2或m+1>5时A∩B=空集
解之得:m<-1/2或m>4
在R中取这两个集合的补集,也就是当-1/2≤m≤4时A∩B≠空集
由之前那一个条件知m≥2
所以m属于[2,4]

收起