已知等腰三角形ABC,角ACB等于90,AC=BC,D为BC边上的一动点,BC等于nDC,CE垂直AD于点E,延长BE交AC于F.1.若n等于3,求CE比DE;AE比DE2.若n等于2,求证:AF等于2FC3.当n为多少时,F为AC的中点.这是一小朋友问我的,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:59:00
已知等腰三角形ABC,角ACB等于90,AC=BC,D为BC边上的一动点,BC等于nDC,CE垂直AD于点E,延长BE交AC于F.1.若n等于3,求CE比DE;AE比DE2.若n等于2,求证:AF等于2FC3.当n为多少时,F为AC的中点.这是一小朋友问我的,
已知等腰三角形ABC,角ACB等于90,AC=BC,D为BC边上的一动点,BC等于nDC,CE垂直AD于点E,延长BE交AC于F.
1.若n等于3,求CE比DE;AE比DE
2.若n等于2,求证:AF等于2FC
3.当n为多少时,F为AC的中点.这是一小朋友问我的,
已知等腰三角形ABC,角ACB等于90,AC=BC,D为BC边上的一动点,BC等于nDC,CE垂直AD于点E,延长BE交AC于F.1.若n等于3,求CE比DE;AE比DE2.若n等于2,求证:AF等于2FC3.当n为多少时,F为AC的中点.这是一小朋友问我的,
(1)由题意得,△CED∽ACD.
∴CE:DE=AC:CD.
∵AC=BC,
∴AC:CD=n=3.
∴CE:DE=3.
同理可得:AE:DE=9.
(2)当n=2时,D为BC的中点,取BF的中点G,连接DG,
则DG= 12FC,DG∥FC.
∵CE⊥AD,∠ACB=90°,
∴∠ECD+∠EDG=CAD+ADC=90°.
∴∠ECD=∠CAD.
∵tan∠ECD= ED/EC,tan∠CAD= DC/AC= EC/EA,
∴ ED/EC= EC/EA= DC/AC.
∵AC=BC,BC=2DC,
∴ ED/EC= EC/EA= DC/AC= 1/2.
∴ ED/AE= 1/4.
∵DE∥FA,
∴△GDE∽△FAE.
∴ DG/FA= DE/AE.
∴DG= 1/4AF.
∵DG= 1/2FC,
∴AF=2FC.
(3)∵AF=FC时,GE:EF=1:2,
∴DE:AE=1:2,CE2=DE•AE.
∴CE:DE=n=(1+根号 5):2.
∴当n= (1+根号5)/2,F为AC的中点.
楼主怎么不帮人解答啊! 我帮你解答吧 n=3市,CE:DE=3 相似三角形原理 AE:DE=9
(1)角ACD=角CED=90度,角CDE=角ADC,得到三角形ACD与三角形DEC相似,
AC:CE=CD:DE,又AC=BC,推出CE:DE=AC:CD=BC:CD=3:1
同理得:AE:CE=3:1,又CE=3DE,推出AE:DE=9:1