过点M(-2,0)的直线m与椭圆x^2/2+y^2=1交于p1、p2两点,线段p1p2的中点为P,设直线m的斜率为k1,k1不等于0,直线OP的斜率为k2,则k1k2的值为多少

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:44:47

过点M(-2,0)的直线m与椭圆x^2/2+y^2=1交于p1、p2两点,线段p1p2的中点为P,设直线m的斜率为k1,k1不等于0,直线OP的斜率为k2,则k1k2的值为多少
过点M(-2,0)的直线m与椭圆x^2/2+y^2=1交于p1、p2两点,线段p1p2的中点为P,设直线m的斜率为k1,
k1不等于0,直线OP的斜率为k2,则k1k2的值为多少

过点M(-2,0)的直线m与椭圆x^2/2+y^2=1交于p1、p2两点,线段p1p2的中点为P,设直线m的斜率为k1,k1不等于0,直线OP的斜率为k2,则k1k2的值为多少
设P1(x1,y1),p2(x2,y2),P(x0,y0)
椭圆x^2/2+y^2=1===>x^2+2y^2=2
则:x1^2+2y1^2=2
x2^2+2y2^2=2
则(x1^2-x2^2)+2(2y1^2-2y2^2)=0
(x1+x2)*(x1-x2)+2(y1+y2)*(y1-y2)=0 ①
即:2x0=x1+x2,
2y0=y1+y2
k1=(y1-y2)/(x1-x2)
即y1-y2=k1(x1-x2)
k2=(y0-0)/(x0-0)
即y0=k2x0
这样,代入①得
2x0(x1-x2)+2*2k2x0*k1(x1-x2)=0
1+2k1k2=0
k1k2=-1/2

已知椭圆x^2/a^2+y^/b^2=1的离心率为1/2,且椭圆的中心关于直线x-3y-10=0的对称点在椭圆的右准线上(1)求椭圆方程(2)设A(M,0),B(1/m,0)(0<m<1)是x轴上的两点,过点A作斜率不为0的直线与椭圆交于M 关于圆锥曲线已知椭圆1/2 X∧2 + Y∧2 =1 及椭圆外一点M(0,2).过该点引直线与椭圆交于A、B中点P的轨迹方程 过点m(4,4)与椭圆x^2/16+y^2/9=1相切的直线方程为 已知椭圆X^2/2+Y^2=1及点B(0,-2),过点B作直线M与椭圆交于C,D两点.1试确定直线M的斜率K的取值范围.2若直线M经过椭圆的左焦点F1,椭圆的右焦点为F2,求三角形CDF2的面积. 已知椭圆x²/8+y²/2=1过点M(2,1),O为坐标原点,平行于OM的直线l在y轴上的截距为m(m≠0)(1)当m=3时,判断直线l与椭圆的关系(2)当m=3时,P为椭圆上的动点,求点P到直线l距离的最小值 一直椭圆x^2+y^/2=1过点A(-根号3,0)的直线l交椭圆于M、N两点,以MN为直径的圆恰过椭圆中心,求直线方程 解析几何,椭圆与直线,求证焦点与两点共线已知椭圆x²/6+y²/2=1,左焦点为F(-2,0),直线L过点M(-3,0),且与椭圆交于不同两点A、B,点A关于x轴的对称点为C.求证:B、F、C三点共线. 已知过点M(-2,0)的直线与椭圆x^2+2y^2=2交于P1,P2两点,线段P1P2的中点为P,设直线L的斜率为K1(K1不等于0),直线OP的斜率为K2,求证:K1*K2是定值.直线L就是过点M的直线,也过P1,P2 Y已知椭圆方程为y^2/2+x^2=1 ,斜率为k的直线l 过椭圆的上焦点且与椭圆交于点P ,Q两点,线段PQ的垂直平分线与y轴交于点M(0,m) (1) 求m的取值范围 (2) 求三角MPQ面积的最大值、 已知椭圆些x^2/2+y^2=1过点A(2,1)的直线与椭圆交点M、N,求弦MN中点轨迹方程 已知椭圆x^2/a^2+y^2/B^2=1的端轴的一个端点D(0,根3),离心率e=1/2,过点D做直线l与椭圆交于另一点M,与x轴交于点A(不同于原点O ),点M关于X 轴对称点为N,直线DN交X轴于点B(1)求椭圆方程:X^2/6+Y^2/ 已知椭圆C;x²/a²+y²/b²=1(a>b>0)的离心率为1/2,直线l过点A(4,0)B(0,2)且与椭圆C相切与点P (1)求椭圆C的方程(2)是否存在过点A(4,0)的直线m与椭圆C相交于不同的两点M, 过点A(4,0)引直线与椭圆x^2/16+y^2/9=1相交于M,N两点,求弦MN中点的轨迹? 过点P(-根号3,0)作直线l交椭圆11x^2+y^2=9过点P(-根号3,0)作直线l交椭圆11X^2+Y^2=9于M、N,若M、N为直径的圆恰好过椭圆中心,求直线l的方程 已知中心在原点,焦点在轴上x的椭圆C的离心率为0.5,且经过点(-1,1.5).求椭圆C的方程若过点P(2,1)的直线L与椭圆C相切与点M,求直线L的方程以及点M的坐标。 已知椭圆y^2/a^2+x^2/b^2=1(a>b>0)的离心率为√2/2,且过点(1,√2),斜率为k(k≠0)的直线l过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).(1)求椭圆的方程;(2)求m的取值 已知椭圆C:X^2/2+Y^2=1.若过点M(2,0)的直线与椭圆C交于两点A、B,设P为椭圆上一点,且满足向量OA+向量OB=已知椭圆C:X^2/2+Y^2=1.若过点M(2,0)的直线与椭圆C交于两点A、B,设P为椭圆上一点,且满足 向量O 已知椭圆C:X^2/2+Y^2=1.若过点M(2,0)的直线与椭圆C交于两点A、B,设P为椭圆上一点,且满足向量OA+向量OB=已知椭圆C:X^2/2+Y^2=1.若过点M(2,0)的直线与椭圆C交于两点A、B,设P为椭圆上一点,且满足 向量O