已知三角形ABC,角A,B,C对应三边分别为a,b,c.已知cosA=2/3,sinB=根号5cosC.1,求tanC.2若a=2,求面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:21:16
已知三角形ABC,角A,B,C对应三边分别为a,b,c.已知cosA=2/3,sinB=根号5cosC.1,求tanC.2若a=2,求面积
已知三角形ABC,角A,B,C对应三边分别为a,b,c.已知cosA=2/3,sinB=根号5cosC.1,求tanC.2若a=2,求面积
已知三角形ABC,角A,B,C对应三边分别为a,b,c.已知cosA=2/3,sinB=根号5cosC.1,求tanC.2若a=2,求面积
由cosA=2/3.结合0º<A<180º可得:
sinA=(√5)/3.cosA=2/3.
[[[[1]]]]
结合sinB=(√5)cosC及sinA=(√5)/3可得
sinAsinB=(5/3)cosC.
∴cosC=cos[180º-(A+B)]=-cos(A+B)=-(cosAcosB-sinAsinB)=sinAsinB-cosAcosB
=[(5/3)cosC]-[(2/3)cosB]
即:cosC=[(5/3)cosC]-[(2/3)cosB]
∴cosB=cosC
∴∠B=∠C.
故由题设sinB=(√5)cosC可得
sinC=(√5)cosC
∴tanC=(sinC)/(cosC)=√5
即tanC=√5.
[[[[[2]]]]
由上面∠B=∠C可得:b=c.
由余弦定理可得
2/3=cosA=(b²+c²-a²)/(2bc)=(2b²-4)/(2b²)=1-(2/b²)
2/b²=1/3
b=c=√6
S=(1/2)bcsinA=3sinA=√5
三角形ABC分别对应三边abc已知a=bcosC+csinB,求角B?
在三角形ABC中,a,b,c分别是三内角A,B,C的对应的三边,已知b^2+c^2=a^2+bc.(1)求角A的大小.(2)若2sin...在三角形ABC中,a,b,c分别是三内角A,B,C的对应的三边,已知b^2+c^2=a^2+bc.(1)求角A的大小.(2)若2sin^2(B/2)+2sin^
三角形ABC中 a,b,c是角A,B,C对应的三边 ,已知 b^2=a^2-c^2+bc角A的值为?
在三角形ABC中,A、B、C是三角形的三个内角,a、b、c是三内角对应的三边,已知b方+c方-a方=bc.(1)求角...在三角形ABC中,A、B、C是三角形的三个内角,a、b、c是三内角对应的三边,已知b方+c方-a方=bc.(1)
ABC是三角形三三内角,abc是三角对应三边,已知b的平方+c的平方-a的平方=bc,求角A?
已知三角形ABC的三角对应的三边分别为a b c,a等于1,角B为45度,求外接圆的直径
已知a b c 分别是三角形ABC的三边 求证 (a^+b^-c^)^-4a^b^
在三角形ABC中,a b c分别是三内角A B C所对应的三边,已知b平方=a平方-c平方+bc,则cosA的值
已知三角形abc三内角a,b,c成等差数列,求证:对应三边a,b,c满足1/(a+b)+1/(b+c)=
已知a,b,c为三角形的三边,A,B,C为三边对应的角的弧度,求(aA+bB+cC)/(a+b+c)的最小值
高一数学问题 三角形abc已知三角形abc三边多对应的三个顶点分别是ABC,且面积公式可表示成S=1/2*a^2-1/2(b-c)^2,那么角A的正弦sinA等于()A.12/13 B.5/13 C.3/5 D.4/5在线等~~~速度啊~~~好的加分~~~
已知Abc分别是三角形Abc的三边,试判断2BC+B平方—a平方+C平方已知abc分别是三角形ABC的三边,试判断2bc+b平方—a平方+C平方
高中数学:已知三角形ABC三内角A,B,C对应三边a,b,c,若cos(A-C)+cosB=3/2,且a,b,c成等比数列,(...高中数学:已知三角形ABC三内角A,B,C对应三边a,b,c,若cos(A-C)+cosB=3/2,且a,b,c成等比数列,(1)求B的大小(2
如何证明数学题?已知 a,b,c为三角形三边,A,B,C为对应边的三个角.求证aCOSA+bCOSB=cCOSC在三角形ABC中,若aCOSA+bCOSB=cCOSC,则这个三角形是什么形状?
在△ABC中,abc分别是三内角ABC对应的三边,已知b²+c²-a²=bc若sin²A+sin²B=sin²C,求角B的大小
几何题好难的说三角形ABC 角ABC 对应三边abc 已知cos 2C =负四分之一⑴求sinC 的值⑵a =2,2sin A =sin C 时,求b,c 的长
已知三角形ABC的三内角A,B,C所对应三边为a,b,c,且sin(π/4+A)=7√2/10,0
已知三角形ABC的三边a,b,c成等差数列,求角b的最大值