设m^2-3m+1=0,n^2-3n+1=0,且m≠n,求代数式1/m^2+1/n^2的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 18:44:36
设m^2-3m+1=0,n^2-3n+1=0,且m≠n,求代数式1/m^2+1/n^2的值
设m^2-3m+1=0,n^2-3n+1=0,且m≠n,求代数式1/m^2+1/n^2的值
设m^2-3m+1=0,n^2-3n+1=0,且m≠n,求代数式1/m^2+1/n^2的值
m^2-3m+1=0,n^2-3n+1=0
m,n是方程x^2-3x+1=0的两根
m+n=3,mn=1
1/m^2+1/n^2=(m^2+n^2)/(mn)^2=[(m+n)^2-2mn]/(mn)^2
=(9-2)/1
=7
7,要过程吗?
由题意可知m、n为方程x^2-3x+1=0的两个解,由韦达定理可知m+n=3,m*n=1.把代数式变形得1/m^2+1/n^2=(n^2+m^2)/m^2*n^2=7