lim(n→∞)(1/(n^2+1)+4/(n^2+1)+7/(n^2+1)+3n-2/(n^2+1)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 03:43:53
lim(n→∞)(1/(n^2+1)+4/(n^2+1)+7/(n^2+1)+3n-2/(n^2+1)=
lim(n→∞)(1/(n^2+1)+4/(n^2+1)+7/(n^2+1)+3n-2/(n^2+1)=
lim(n→∞)(1/(n^2+1)+4/(n^2+1)+7/(n^2+1)+3n-2/(n^2+1)=
原式=lim(n→∞)[1+4+7+……+(3n-2)]/n²+1)
=lim(n→∞)[(3n-1)n/2]/n²+1)
=lim(n→∞)(3n²-n)/(2n²+2)
上下除以n²
=lim(n→∞)(3-1/n)/(2+2/n²)
=3/2
求极限 lim(n→∞) tan^n (π/4 + 2/n) lim(n→∞)tan^n(π/4+2/n) =lim(n→∞)[(tan(π/4)+tan(2/n))/(1-tan(π/4)tan(2/n))]^n =lim(n→∞)[(1+tan(2/n))/(1-tan(2/n))]^n =lim(n→∞)(1+tan(2/n))^n/(1-tan(2/n))^n (1) 因为 lim(n→∞)(1+tan(2/n)
求lim n→∞ (1+2/n)^n+3
lim(n→∞)[1-(2n/n+3)]
lim(n→∞)(2n-1/n+3)
用数列极限证明lim(n→∞)(n^-2)/(n^+n+1)=1中证明如下:lim(n→∞)3n+1/5n-4
lim (n!+(n-1)!+(n-2)!+(N-3)!+⋯..+2!+1)/n!其中n→∞
lim(n→∞) ((2n!/n!*n)^1/n的极限用定积分求是lim(n→∞) 1/n(2n!/n!)^1/n 不好意思
求当n→∞,Lim(1+2+3+4+……+(n-1)+n)/n
大一微积分解答:lim(n→+∞)(2^n+4^n+6^n+8^n)^1/n=?
lim(n→∞) 1/(n+1)-2/(n+1)+3/(n+1)-4/(n+1)+...+[(2n-1)/(n+1)]-[(2n)/(n-1)]求极限
lim(n+3)(4-n)/(n-1)(3-2n)
lim(n^3+n)/(n^4-3n^2+1)
lim(n→∞)[1/(3n+1)+1/(3n+2)+~1/(3n+n)]
求极限lim [ 2^(n+1)+3^(n+1)]/2^n+3^n (n→∞)
lim(n→∞) 根号n+2-根号n+1/根号n+1-根号n
计算lim(n→∞)(1^n+2^n+3^n)^(1/n)
lim n →∞ (1^n+3^n+2^n)^1/n,求数列极限
lim(n→∞)(3n^3-2n+1)/n^3+n^2 快