设ABC的内角A、B、C的所对的边长分别为a、b、c,且a2+b2=mc2(m为常数),且tanC(tanA+tanB)=2tanAtanB,求m的值(答案是2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 17:59:15
设ABC的内角A、B、C的所对的边长分别为a、b、c,且a2+b2=mc2(m为常数),且tanC(tanA+tanB)=2tanAtanB,求m的值(答案是2)
设ABC的内角A、B、C的所对的边长分别为a、b、c,且a2+b2=mc2(m为常数),且tanC(tanA+tanB)=2tanAtanB,求m的值(答案是2)
设ABC的内角A、B、C的所对的边长分别为a、b、c,且a2+b2=mc2(m为常数),且tanC(tanA+tanB)=2tanAtanB,求m的值(答案是2)
tanAtanB/[(tanA+tanB)tanC] = 1/2
tanAtanB/[(tanA+tanB)tanC]
=sinAsinB/((sinAcosB+cosAsinB)tanC)
=sinAsinB/(tanCsin(A+B))
=sinAsinBcosC/(sinCsinC)
根据正弦定理得:sinA/sinC=a/c,sinB/sinC=b/c,
根据余弦定理得:cosC=(a^2+b^2-c^2)/2ab,
所以上式=ab/c^2*(a^2+b^2-c^2)/2ab
=1/2*(a^2+b^2-c^2)/ c^2
=1/2*(m-1),
根据已知:1/2*(m-1) = 1/2,m=2
∵tanC(tanA+tanB)=2tanAtanB
∴tanAtanB/[(tanA+tanB)tanC] = 1/2
∴1/2=tanAtanB/[(tanA+tanB)tanC]
=sinAsinB/((sinAcosB+cosAsinB)tanC)
=sinAsinB/(tanCsin(A+B))
=sinAsinBcosC/(sinCsinC)
全部展开
∵tanC(tanA+tanB)=2tanAtanB
∴tanAtanB/[(tanA+tanB)tanC] = 1/2
∴1/2=tanAtanB/[(tanA+tanB)tanC]
=sinAsinB/((sinAcosB+cosAsinB)tanC)
=sinAsinB/(tanCsin(A+B))
=sinAsinBcosC/(sinCsinC)
=(sinA/sinC)(sinB/sinC)cosC
而sinA/sinC=a/c,
sinB/sinC=b/c,
cosC=(a^2+b^2-c^2)/2ab,
∴1/2=(a/c )(b/c)(a^2+b^2-c^2)/2ab
=ab/c^2*(a^2+b^2-c^2)/2ab
=1/2*(a^2+b^2-c^2)/ c^2
=1/2*(m-1),
∴m=2
收起