在△ABC中,已知a,b,c分别是A,B,C的对边.不等式X²COSC+4XSINC+6≥0对一切实数X恒成立.(1)求∠C的最大值(2)若角C取得最大值且a=2b,求B其实可以再详细一些....
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:25:16
在△ABC中,已知a,b,c分别是A,B,C的对边.不等式X²COSC+4XSINC+6≥0对一切实数X恒成立.(1)求∠C的最大值(2)若角C取得最大值且a=2b,求B其实可以再详细一些....
在△ABC中,已知a,b,c分别是A,B,C的对边.不等式X²COSC+4XSINC+6≥0对一切实数X恒成立.
(1)求∠C的最大值
(2)若角C取得最大值且a=2b,求B
其实可以再详细一些....
在△ABC中,已知a,b,c分别是A,B,C的对边.不等式X²COSC+4XSINC+6≥0对一切实数X恒成立.(1)求∠C的最大值(2)若角C取得最大值且a=2b,求B其实可以再详细一些....
只给思路
根据条件,其判别式小于0
然后设cosC=y
显然-1
x^2cosC+4xsinC+6
=x^2+4xtanC+6/cosC
=(x+2tanC)^2+6/cosC-4(tanC)^2
因(x+2tanC)^2≥0,要使原式恒成立,则 6/cosC-4(tanC)^2≥0
[6cosC-4(sinC)^2]/(cosC)^2≥0
即6cosC-4(sinC)^2≥0 因分母(cosC)^2必大于0...
全部展开
x^2cosC+4xsinC+6
=x^2+4xtanC+6/cosC
=(x+2tanC)^2+6/cosC-4(tanC)^2
因(x+2tanC)^2≥0,要使原式恒成立,则 6/cosC-4(tanC)^2≥0
[6cosC-4(sinC)^2]/(cosC)^2≥0
即6cosC-4(sinC)^2≥0 因分母(cosC)^2必大于0
解得:cosC≤1/2 ,即取1/2时,C为60°,此时
a=2b
所以 B为90°
收起
X²cosC+4xsinC+6≥0恒成立, ∴顶点时的极小值=(4cosC×6-16sin²C)/4cosC=0
∴24cosC-16sin²C=0 cosC+3/4=±5/4 ∴cos=-2(舍) cosC=1/2 ∴此时角C有最大值60度
又因为C²=a²+b²-2abcosC=...
全部展开
X²cosC+4xsinC+6≥0恒成立, ∴顶点时的极小值=(4cosC×6-16sin²C)/4cosC=0
∴24cosC-16sin²C=0 cosC+3/4=±5/4 ∴cos=-2(舍) cosC=1/2 ∴此时角C有最大值60度
又因为C²=a²+b²-2abcosC=4b²+b²-2×2b×b=3b²,即b²+c²=a² ∴该三角形为直角三角形,所以角B显然为30度
收起