已知函数f(x)=cos^4-2sinxcosx-sinx^4(1)写出函数f(x)的单调递增区间(2)求方程2f(x)+√3=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 18:25:00
已知函数f(x)=cos^4-2sinxcosx-sinx^4(1)写出函数f(x)的单调递增区间(2)求方程2f(x)+√3=0
已知函数f(x)=cos^4-2sinxcosx-sinx^4
(1)写出函数f(x)的单调递增区间
(2)求方程2f(x)+√3=0
已知函数f(x)=cos^4-2sinxcosx-sinx^4(1)写出函数f(x)的单调递增区间(2)求方程2f(x)+√3=0
f(x)=(cosx)^4-2sinxcosx-(sinx)^4=[(cosx)^2+(sinx)^2][(cosx)^2-(sinx)^2]-2sinxcosx
=(cosx)^2-(sinx)^2-2sinxcosx=cos2x-sin2x
=√2*(√2/2*cos2x-√2/2*sin2x)
=√2cos(2x+π/4) .
1)由 π+2kπ
f(x)=(cos²x+sin²x)(cos²x-sin²x)-2sinxcosx
=1*cos2x-sin2x
=-(sin2x-cos2x)
=-√2sin(2x-π/4)
(1)2kPai+Pai/2<=2x-Pai/4<=2kPai+3Pai/2
即单调增减区间是[KP ai+3Pai/8,kPai+7Pai/...
全部展开
f(x)=(cos²x+sin²x)(cos²x-sin²x)-2sinxcosx
=1*cos2x-sin2x
=-(sin2x-cos2x)
=-√2sin(2x-π/4)
(1)2kPai+Pai/2<=2x-Pai/4<=2kPai+3Pai/2
即单调增减区间是[KP ai+3Pai/8,kPai+7Pai/8]
(2)-2根号2sin(2x-Pai/4)=-根号2.(把根号3改成根号2好做一些)
sin(2x-Pai/4)=1/2
2x-Pai/4=2kPai+Pai/6或5Pai/6
那么有X=KP ai+5Pai/24或13Pai/24
收起
f(x)=[cos^4(x)-sin^4(x)]-sin2x
=[cos^2(x)+sin^2(x)][cos^2(x)-sin^2(x)]-sin2x
=cos2x-sin2x=√2cos(2x+π/4)
(1)
单调增区间是由不等式:
-π+2kπ≤2x+π/4≤2kπ 解得:
-3π/8+kπ≤x≤π/8+kπ
即...
全部展开
f(x)=[cos^4(x)-sin^4(x)]-sin2x
=[cos^2(x)+sin^2(x)][cos^2(x)-sin^2(x)]-sin2x
=cos2x-sin2x=√2cos(2x+π/4)
(1)
单调增区间是由不等式:
-π+2kπ≤2x+π/4≤2kπ 解得:
-3π/8+kπ≤x≤π/8+kπ
即:【-3π/8+kπ,π/8+kπ 】
(2)原方程可化为:
cos(2x+π/4)=-√6/4
2x+π/4=2π±arccos(-√6/4)
=2π±(π-arccos(√6/4))
收起