已知2^a*5^b=2^c*5^d=10,求证:(a-1)(d-1)=(b-1)(c-1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:55:56

已知2^a*5^b=2^c*5^d=10,求证:(a-1)(d-1)=(b-1)(c-1)
已知2^a*5^b=2^c*5^d=10,求证:(a-1)(d-1)=(b-1)(c-1)

已知2^a*5^b=2^c*5^d=10,求证:(a-1)(d-1)=(b-1)(c-1)
证明:
∵2^a•5^b=10=2×5,
∴2^(a-1)•5^(b-1)=1,
∴[2^(a-1)•5^(b-1)]^(d-1)=1^(d-1),①
同理可证:[2^(c-1)•5^(d-1)]^(b-1)=1^(b-1),②
由①②两式得
[2^(a-1)•5^(b-1)]^(d-1)=[2^(c-1)•5^(d-1)]^(b-1),
2^[(a-1)(d-1)]×5^[(b-1)(d-1)]=2^[(b-1)(c-1)]×5^[(b-1)(d-1)]
2^[(a-1)(d-1)]=2^[(b-1)(c-1)]
∴(a-1)(d-1)=(b-1)(c-1).

2^a×5^b=2^c×5^d=10
除以10
2^a×5^b/10=2^c×5^d/10=1
(2^a/2)×(5^b/5)=(2^c/2)×(5^d/5)=1
2^(a-1)×5^(b-1)=2^(c-1)×5^(d-1)=1
取对数
(a-1)lg2+(b-1)lg5=(c-1)lg2+(d-1)lg5=0
(a-1)lg2+(b-1)...

全部展开

2^a×5^b=2^c×5^d=10
除以10
2^a×5^b/10=2^c×5^d/10=1
(2^a/2)×(5^b/5)=(2^c/2)×(5^d/5)=1
2^(a-1)×5^(b-1)=2^(c-1)×5^(d-1)=1
取对数
(a-1)lg2+(b-1)lg5=(c-1)lg2+(d-1)lg5=0
(a-1)lg2+(b-1)lg5=0
lg2/lg5=-(b-1)/(a-1)
=(c-1)lg2+(d-1)lg5=0
lg2/lg5=-(d-1)/(c-1)
所以-(b-1)/(a-1)=-(d-1)/(c-1)
(a-1)(d-1)=(b-1)(c-1)

收起

由2^a*5^b=2^c*5^d=10得
2^(a-1)*5^(b-1)=2^(c-1)*5^(d-1)=1
取对数得
ln[2^(a-1)*5^(b-1)]=(a-1)ln2+(b-1)ln5=0
即(a-1)ln2=-(b-1)ln5(1)
ln[2^(c-1)*5^(d-1)]=(c-1)ln2+(d-1)ln5=0
即(c-1)ln2=-(d...

全部展开

由2^a*5^b=2^c*5^d=10得
2^(a-1)*5^(b-1)=2^(c-1)*5^(d-1)=1
取对数得
ln[2^(a-1)*5^(b-1)]=(a-1)ln2+(b-1)ln5=0
即(a-1)ln2=-(b-1)ln5(1)
ln[2^(c-1)*5^(d-1)]=(c-1)ln2+(d-1)ln5=0
即(c-1)ln2=-(d-1)ln5(2)
由(1)(2)联立得证

收起