已知数列an的前n项和Sn=(n+1)bn,其中bn是首项为1,公差为2的等差数列(1)求数列an的通项公式(2)若Cn=1/an(2bn+5),求数列Cn的前n项和Tn我更需要的是解这种题目的思路,能顺便解释下裂项法么...
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:19:38
已知数列an的前n项和Sn=(n+1)bn,其中bn是首项为1,公差为2的等差数列(1)求数列an的通项公式(2)若Cn=1/an(2bn+5),求数列Cn的前n项和Tn我更需要的是解这种题目的思路,能顺便解释下裂项法么...
已知数列an的前n项和Sn=(n+1)bn,其中bn是首项为1,公差为2的等差数列
(1)求数列an的通项公式
(2)若Cn=1/an(2bn+5),求数列Cn的前n项和Tn
我更需要的是解这种题目的思路,
能顺便解释下裂项法么...
已知数列an的前n项和Sn=(n+1)bn,其中bn是首项为1,公差为2的等差数列(1)求数列an的通项公式(2)若Cn=1/an(2bn+5),求数列Cn的前n项和Tn我更需要的是解这种题目的思路,能顺便解释下裂项法么...
(1)
bn=2n-1 (n∈N*)
Sn=(n+1)bn=2n^2+n-1①
故S(n-1)=2(n-1)^2+(n-1)-1=2n^2-3n②(n≥2,n∈N*)
①-②得an=4n-1(n≥2,n∈N*)
当n=1,S1=a1=2(1)^2+1-1=2
而a1=1×4-1=3≠2
故an=2,n=1
an=4n-1,n≥2,n∈N*
(2)
当n=1时,c1=1/[a1*(2b1+5)]=1/14,
当 n>=2 时,cn=1/[an*(2bn+5)]=1/[(4n-1)(4n+3)],
由于 1/[(4n-1)(4n+3)]=1/4*[1/(4n-1)-1/(4n+3)],
所以,由裂项相消法可得
n=1时,Tn=1/14,
n>=2时,Tn=c1+(c2+c3+...+cn)
=1/14+1/4*[(1/7-1/11)+(1/11-1/15)+.+1/(4n-1)-1/(4n+3)]
=1/14+1/4*[1/7-1/(4n+3)]
=(6n+1)/[14(4n+3)]
由于n=1时,Tn=1/14=(6n+1)/[14(4n+3)],
所以,所求Tn=(6n+1)/[14(4n+3)](n>=1,n∈N*).
这个只要用课本上面的公式就行了吧?你先自己去试试看,按这个思路:先写出bn的前N项和,然后就用Sn-Sn-1得出an,然后再算当n=1时a1的值,这样就算出了an的通项公式,代入,再利用裂项方法求出Tn就行了
(1)依题意得
bn=2n-1 (n∈N*)
Sn=(n+1)bn=2n^2+n-1①
故S(n-1)=2(n-1)^2+(n-1)-1=2n^2-3n②(n≥2,n∈N*)
①-②得an=4n-1(n≥2,n∈N*)
当n=1,S1=a1=2(1)^2+1-1=2
而a1=1×4-1=3≠2
故
{2,n=1}
...
全部展开
(1)依题意得
bn=2n-1 (n∈N*)
Sn=(n+1)bn=2n^2+n-1①
故S(n-1)=2(n-1)^2+(n-1)-1=2n^2-3n②(n≥2,n∈N*)
①-②得an=4n-1(n≥2,n∈N*)
当n=1,S1=a1=2(1)^2+1-1=2
而a1=1×4-1=3≠2
故
{2,n=1}
an=
{4n-1,n≥2,n∈N*}
(2)bn=1+(n-1)*2=2n-1 ;
sn=(n+1)(2n-1) ;
an=sn-sn-1=(n+1)(2n-1)-n(2n-3)=2n^2+n-1-2n^2+3n=4n-1;
cn=1/(4n-1)(4n+3)=1/4[1/4n-1 -1/4n+3]
cn前n项和为Tn
n=1时,c1=1/a1(2b1+5)=1/14,Tn=1/14
n≥2时,
Tn=c1+c2+...+cn
=1/14+1/4(1/7-1/11+...+1/4n-1 -1/4n+3)
=1/14+1/4[1/7-1/4n+3]
=3/28-1/4(4n+3)
(楼上无需再把答案由简变繁)
收起