设数列{An}和{bn}满足A1=1/2,2nA(n+1)=(n+1)An,且Bn=ln(1+An)+1/2(An)2,n属于N+(1):求A2,A3,A4,并求数列{An}的通项公式(2):对一切n属于N+,证明2/(An+2)小于An/Bn成立

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:02:05

设数列{An}和{bn}满足A1=1/2,2nA(n+1)=(n+1)An,且Bn=ln(1+An)+1/2(An)2,n属于N+(1):求A2,A3,A4,并求数列{An}的通项公式(2):对一切n属于N+,证明2/(An+2)小于An/Bn成立
设数列{An}和{bn}满足A1=1/2,2nA(n+1)=(n+1)An,且Bn=ln(1+An)+1/2(An)2,n属于N+(1):求A2,A3,A4,并求数列{An}的通项公式(2):对一切n属于N+,证明2/(An+2)小于An/Bn成立

设数列{An}和{bn}满足A1=1/2,2nA(n+1)=(n+1)An,且Bn=ln(1+An)+1/2(An)2,n属于N+(1):求A2,A3,A4,并求数列{An}的通项公式(2):对一切n属于N+,证明2/(An+2)小于An/Bn成立
(1)A1=1/2,2nA(n+1)=(n+1)An,
∴A/(n+1)=(1/2)An/n=…=1/2^n,
∴An=n/2^n.A2=1/2,A3=3/8,A4=1/4.
(2)An(An+2)-2Bn
=2[An-ln(1+An)]>0,
An,Bn>0,
∴原式成立.

in the end ? Please carefully watched ,mulberry handbags! -
Tip: Turn off the background music in this space ,Wholesale Mac Makeup
juice of fresh fried

in the end ? Please carefully watched ,mulberry handbags! -
Tip: Turn off the background music in this space ,Wholesale Mac Makeup! -
What secret does
-
-
street . pearl milk tea . Coconut milk ,mulberry bags! -
juice of fresh fried

已知数列{an},{bn}满足a1=2,2an=1+2an*an+1,设{bn}=an-1求数列{1n}为等差数列急!!! 已知数列{an},{bn}满足a1=2,2an=1+ana(n+1),bn=an-1,设数列{bn}的前n项和为Sn,Tn=S2n-Sn.求数列{bn}的通项公式. 设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1等比数列且a1=1,b1=2,a2=3求通项an,bn 设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=1,b1=2,a2=3,求通项an,bn 设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] .设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] 成等比数列,lg[bn],lg[a(n+1)],lg[bn+1]成等差数列,且a1=1,b1=2,a2=3,求通项an、bn. 已知数列{an}满足a1=-1,an=[(3n+3)an+4n+6]/n,bn=3^(n-1)/an+2.求数列an的通向公式.设数列bn是的前n项和已知数列{an}满足a1=-1,an=[(3n+3)an+4n+6]/n,bn=3^(n-1)/an+2.(1)求数列an的通向公式.(2)设数列bn是的前n项和为sn, 【高考】若数列{an}满足,a1=1,且a(n+1)=an/(1+an),设数列{bn}的前n项和为Sn,且Sn=2-bn,求{bn/an}的前...【高考】若数列{an}满足,a1=1,且a(n+1)=an/(1+an),设数列{bn}的前n项和为Sn,且Sn=2-bn,求{bn/an}的前n项和Tn 设数列{an}满足a1=,an+1-an=3*2的2n-1 求数列{an通项公式 令bn=nan.求数列{bn}的前n项和 设数列an满足a1=2 an+1-an=3-2^2n-11.求数列的通项 2.令bn=n*an 求数列bn的前N项和 设数列{an}和{bn}满足:a1=b1=6,a2=b2=4,a3=b3=3,数列{an+1-an}是等差数列···设数列{an}和{bn}满足:a1=b1=6,a2=b2=4,a3=b3=3,数列{an+1-an}是等差数列,Sn为数列{bn}的前n项和,且Sn=2n-bn+10,(1)分别求{an}{bn}的通项公式(2 已知数列{an}满足A1=2,An+1=An - 1/n(n+1) (1)求数列an的通项公式 (2)设{Bn}=nAn*2^n,求数列Bn前n项和SnRT已知数列{an}满足A1=2,An+1=An - 1/n(n+1) (1)求数列an的通项公式(2)设{Bn}=nAn*2^n,求数列Bn前n项和Sn是A(n+1) 数列{an}满足a1=1/2,an+1=1/2-an(n属于正整数)设bn=1/1-an,证明{bn}是等差数列,并求bn和an各位哥哥姐姐们谁会啊? 已知数列an满足a1+2a2+2^2a3+...+2^n-1an=n/2(1).求数列an的通项公式.(2)设bn=(2n-1)an,求数列bn的...已知数列an满足a1+2a2+2^2a3+...+2^n-1an=n/2(1).求数列an的通项公式.(2)设bn=(2n-1)an,求数列bn的前n项和sn 已知数列an满足a1=2,3an+1=an+2 1求an的通项公式 2设bn=log1/3底(an-1)求数列bn前n项和sn 数列an,bn满足a1=b1=1,an+1-an=bn+1/bn=2,则数列ban的前10项和为 设数列{an}满足a1=2,a(n+1)-an=3*2^2n-11)求数列{an}的通项公式2)令bn=nan,求数列{bn}前n项和Sn 设数列an满足a1+3a2+3^2a3+……+3^(n-1)an=n/3,a是正整数,设bn=n/an,求数列bn的前n项和 设数列an的前n项和为sn,且a1=1,an+1=2sn+1,数列bn满足a1=b1,点p(bn,bn+1)在直线x-y+2=0上,n是正整数.求an,bn的通项公式.设cn=bn/an,求cn的前n项和tn