证明函数F(X)=[根号(X²+1)]-X是减函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 17:24:19
证明函数F(X)=[根号(X²+1)]-X是减函数
证明函数F(X)=[根号(X²+1)]-X是减函数
证明函数F(X)=[根号(X²+1)]-X是减函数
x<0时,(x^2+1)是减函数,故√(x^2+1)是减函数,而-x也是减函数,所以F(x)是减函数;
x>=0时,
F(x)=√(x^2+1)-x][√(x^2+1)+x]/[√(x^2+1)+x]
=(x^2+1-x^2)/[√(x^2+1)+x]
=1/[√(x^2+1)+x]
因x>=0,分母中√(x^2+1),x都是增函数,所以F(x)为减函数;
综上,F(x)在R上都是减函数.
(x²+1)都在根号下还是(根号下x²)再加一?
这样可以么?