如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F. 求证:AE=EF.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:32:36

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F. 求证:AE=EF.
如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F. 求证:AE=EF.

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F. 求证:AE=EF.
取AB中点P,则AP=CE=AB/2=BC/2,PB=PE
RT△PBE中∠EPB=∠PEB=45°
所以有∠APE=180°-45°=135°
∠FCE=∠DCB°+45=135°=∠APE
∠EAB=90°-∠AEB=180°-90°-∠AEB=∠FEC
△AEP≌△EFC
所以AE=EF

证明:取AB的中点H,连接EH;
∵ABCD是正方形,
AE⊥EF;
∴∠1+∠AEB=90°,
∠2+∠AEB=90°
∴∠1=∠2,
∵BH=BE,∠BHE=45°,
且∠FCG=45°,
∴∠AHE=∠ECF=135°,AH=CE,
∴△AHE≌△ECF,
∴AE=EF。

①成立
在AB上取一点M,使AM=EC,连接ME.
∴BM=BE.∴∠BME=45°.∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF=45°.∴∠ECF=135°.
∴∠AME=∠ECF.
∵∠AEB+∠BAE=90°,∠AEB+CEF=90°,
∴∠BAE=∠CEF.
...

全部展开

①成立
在AB上取一点M,使AM=EC,连接ME.
∴BM=BE.∴∠BME=45°.∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF=45°.∴∠ECF=135°.
∴∠AME=∠ECF.
∵∠AEB+∠BAE=90°,∠AEB+CEF=90°,
∴∠BAE=∠CEF.
在△AME和 △BCF中
∠EAM=∠EHC
AM=EC
∠AME=∠ECF
∴△AME≌△BCF(ASA).
∴AE=EF.
②成立
在BA的延长线上取一点N,使AN=CE,连接NE.
∴BN=BE.
∴∠ENB=∠FCE=45°.
∴∠ANE=∠CEF=135`
四边形ABCD是正方形,
∴AD//BE.
∴∠DAE=∠BEA.
∴∠NAE=∠CEF.
在△ANE和△ECF中
∠ANE=∠CEF
AN=CE
∠NAE=∠FCE
∴△ANE≌△ECF(ASA).
∴AE=EF.

收起

如图,在菱形ABCD中,点E,F为BC上两点,且BE=CF,AF=DE,求证四边形ABCD是正方形 如图四边形ABCD是正方形,点E是AC上的点EG⊥BC EF⊥AB 试猜测DE与FG关系如何 如图,四边形abcd是正方形,点e是ac上的点eg垂直bc,ef垂直ab,试猜测de于fg的关系 如图 点e,f分别是矩形abcd边ad和bc上的点,且四边形abfe是正方形,矩形efdc 如图,已知四边形ABCD是正方形.延长AB至点E,使BE=BD,连接DE交BC于点F,求∠DFB的度数 已知,如图,四边形ABCD是正方形,点E在BF上,若四边形AEFC是菱形,求菱形面积 3、(2009年湖北十堰市)如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.十堰3、(2009年湖北十堰市)如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点 如图已知E、F分别是正方形ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形; 已知:如图,在矩形ABCD中,BE平分∠ABC,交AD于点E,EF⊥BC,垂足为F.求证:四边形ABFE是正方形 如图,四边形ABCD是正方形,延长BC到F,使CF=AC,连接AF,交CD于E点,求∠AEC度数. 如图,E,F是正方形ABCD两边AB,BC的中点,AF、CE交于G点,若正方形ABCD的面积等于1,求四边形AGCD的面积9点之前! 请教一道数学题:数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点∠AEF=900数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点∠AEF=900,且EF交正方 如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别是F,G.若正方形ABCD的周长是40,求四边形EFBG的周长.过程要清晰, 如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别是F,G.若正方形ABCD的周长是40,求四边形EFBG的周长 如图 四边形ABCD是正方形 点E F G H分别在边AB BC CD DA上 连接EF GH (如图 四边形ABCD是正方形 点E F G H分别在边AB BC CD DA上 连接EF GH (1)如果EF=GH 求证EF垂直GH(2)如果EF垂直GH 求证EF等于GH 初三数学相似三角形证明题已知:如图,四边形ABCD是正方形,E是AB延长线上的一点,DE交BC已知:如图,四边形ABCD是正方形,E是AB延长线上的一点,DE交BC于点F,FG∥DC交CE于G,求证:FB=FG. 如图,四边形abcd是正方形,e,f为bc,cd上的点,且△aef是等边三角形 求证ce=cf 求如图,四边形abcd是正方形,e、f为bc、cd上的点,且△aef是等边三角形 求证ce=cf 求∠bea的度数 如图 E,F是正方形ABCD两边AB,BC的中点,AF,CE交于点G,若正方形ABCD的面积等于1,求四边形AGCD的面积(无