已知向量OP=(2,1),OA=(1,7),OB=(5,1),设X是直线AP上的一点(O为坐标原点),那么XA*XB的最小值是多少?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:23:03
已知向量OP=(2,1),OA=(1,7),OB=(5,1),设X是直线AP上的一点(O为坐标原点),那么XA*XB的最小值是多少?
已知向量OP=(2,1),OA=(1,7),OB=(5,1),设X是直线AP上的一点(O为坐标原点),那么XA*XB的最小值是多少?
已知向量OP=(2,1),OA=(1,7),OB=(5,1),设X是直线AP上的一点(O为坐标原点),那么XA*XB的最小值是多少?
直线AP的方程为:y=-6x+13
设点A坐标(x,-6x+13)
xa=(1-x,6x-6)
xb=(5-x,6x-12)
xa*xb=(1-x)(5-x)+(6x-6)(6x-12)=37x^2+40x-77
在x=-20/37处取得最小值,为-3249/37.
A(1,7) P(2,1)
X在 AP直线上设为(x,-6x+13)
XA=(1-x,7+6x-13) XB=(5-x,1+6x-13)
XA*XB=(1-x)(5-x)+(7+6x-13)(1+6x-13)配成一个二次函数,求最小值就行了.有点烦的,不解了
等轴双曲线与向量已知等轴双曲线C:x^2-y^2=a^2[a>0]上的一定点P(x0,y0)及曲线C上两动点AB满足(向量OA-向量OP)*(向量OB-向量OP)=0 (其中O为原点)1、求证:(向量OA+向量OP)*(向量OB+向量OP)=0 2、
已知向量OA,向量OB不共线,向量OP=a向量OA+b向量OB,且a+b=1,求P位置
已知向量OP=(2,1),OA=(1,7),OB=(5,1),设x是直线OP上的一点,(O为坐标原点),那么向量XA*XB的最小值是?thanks向量积,不过答案是-8
已知向量OA的模=3 向量OB的模=4 OA⊥OB 又向量OP=(1-t)向量OA+t向量OB 且OP⊥AB 则实数t的值为?
向量op=(2,1)向量OA=(1,7),向量OB=(5,1),且向量OC=t向量OP,(t属于R,其中O是坐标原点)(1)求向量CA*向...向量op=(2,1)向量OA=(1,7),向量OB=(5,1),且向量OC=t向量OP,(t属于R,其中O是坐标原点)(1)求向量CA*向量CB取得
已知向量OP=(2,1)OA=(1,7)OB=(5,1),设X是直线OP上的一点,O为坐标原点,那么向量XA*XB的最小值
已知向量op=(2,1),oA=(1,7),oB=(5,1),设x是直线OP上的一点(0为坐标原点),那么向量XA点乘XB的最小值是多
已知A(2,3)B(-2,1),动点P满足向量OP=t向量OA+(1-t)向量OB,则点P的轨迹方程是
已知△AOB的面积为1,向量OP=向量OA/5+2向量OB/5,则△APB的面积为
已知点O(0,0)、A(1,2),向量OP=向量OA+t*向量AB ,问:四边形ABPO能否为平行四边形
平面向量数学题已知P点在直线X+Y=-1上,向量OP的模等于1,向量OA点乘向量OP等于1,求向量OA顶点A的轨迹方程(有两解)
已知向量AP=2AB都有向量OP=?A.向量2OB-向量OA B.向量2OB+向量OA C.向量2OA-向量OB D.向量2OA-向量OB
向量op=(2,1)向量OA=(1,7),向量OB=(5,1)设C施直线向量OP上一点,(其中O为原点),求使向量CA点击向量op=(2,1)向量OA=(1,7),向量OB=(5,1)设C施直线向量OP上一点,(其中O为原点),1)求使向量CA点击向量CB取得最小
已知O是三角形ABC的外心,且向量OP= 向量OA+ 向量OB+ 向量OC,向量OQ= 1/3(向量OA+ 向量OB+ 向量OC),则点P、Q分别是三角形ABC的 心和 心.
已知向量OA向量ob,为两个不共线向量,且向量ap=t向量ab,其中t是实数求证向量op=(1-t)向量oa+t向量ob
已知O是三角形ABC的外心,且向量OP=向量OA+向量OB+向量OC,向量OQ=1/3(向量OA+向量OB+向量OC),则点P,Q分别是三角形ABC的什么?
向量OP=(2,1),向量OA=(1,7),向量OB=(5,1),设X是直线OP上的一点(O为坐标原点),那么向量XA乘向量XB的最小值是
点O(0,0) A(1,2) B(4,5) 向量OP=向量OA+向量AB 当t属于R变化时求点P的轨迹方程向量OP=向量OA+t向量AB