在Rt三角形ABC中,角ACB=90度,AC=BC,D为BC边的中点,CE垂直于AD,垂足为E,BF平行于AC,交CE的延长线于点F,连接DF,求证:AB垂直平分DF.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:50:38

在Rt三角形ABC中,角ACB=90度,AC=BC,D为BC边的中点,CE垂直于AD,垂足为E,BF平行于AC,交CE的延长线于点F,连接DF,求证:AB垂直平分DF.
在Rt三角形ABC中,角ACB=90度,AC=BC,D为BC边的中点,CE垂直于AD,垂足为E,BF平行于AC,交CE的延长线于点F,连接DF,求证:AB垂直平分DF.

在Rt三角形ABC中,角ACB=90度,AC=BC,D为BC边的中点,CE垂直于AD,垂足为E,BF平行于AC,交CE的延长线于点F,连接DF,求证:AB垂直平分DF.
在三角形ACD中,有:角CAD=角BCF
又:AC=BC
角ACD=角CBF=90度
则:三角形ACD全等于三角形CBF
所以:CD=BF
又:CD=BD
则:BD=BF
则三角形BDF为等腰直角三角形.
又AB平分角DBF(角DBA=角ABF=45度)
所以AB垂直平分DF