(2n`2-3n)-[2(n-1)`2-3(n-1)] =4n-5( 2n`2-3n)-[2(n-1)`2-3(n-1)] =4n-5 越详细越好,还有那个2(n-1)`2怎么变化也要详细说明,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:13:14
(2n`2-3n)-[2(n-1)`2-3(n-1)] =4n-5( 2n`2-3n)-[2(n-1)`2-3(n-1)] =4n-5 越详细越好,还有那个2(n-1)`2怎么变化也要详细说明,
(2n`2-3n)-[2(n-1)`2-3(n-1)] =4n-5
( 2n`2-3n)-[2(n-1)`2-3(n-1)]
=4n-5
越详细越好,
还有那个2(n-1)`2怎么变化也要详细说明,
(2n`2-3n)-[2(n-1)`2-3(n-1)] =4n-5( 2n`2-3n)-[2(n-1)`2-3(n-1)] =4n-5 越详细越好,还有那个2(n-1)`2怎么变化也要详细说明,
(2n²-3n)-[2(n-1)²-3(n-1)]
=(2n²-3n)-[2(n²-2n+1)-3(n-1)]
=(2n²-3n)-[2n²-4n+2-3n+3]
=2n²-3n-2n²+4n-2+3n-3
=4n-5
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
2^n/n*(n+1)
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
化简n分之n-1+n分之n-2+n分之n-3+.+n分之1
化简n分之n-1+n分之n-2+n分之n-3+.+n分之1
化简(n+1)(n+2)(n+3)
当n为正偶数,求证n/(n-1)+n(n-2)/(n-1)(n-3)+...+n(n-2).2/(n-1)(n-3)...1=n
(n+2)!/(n+1)!
3(n-1)(n+3)-2(n-5)(n-2)
lim2^n +3^n/2^n+1+3^n+1
lim(n+3)(4-n)/(n-1)(3-2n)
lim(n^3+n)/(n^4-3n^2+1)
n(n+1)(n+2)(n+3)+1 因式分解
n(n+1)(n+2)(n+3)+1等于多少
lim[(n+3)/(n+1))]^(n-2) 【n无穷大】
lim(2^n+3^n)^1
(n趋向无穷)
级数n/(n+1)(n+2)(n+3)和是多少