设各项均为正数的数列{an}的前n项和为Sn已知2a2=a1+a3数列{根号Sn}的公差为d的等差数列求数列{an}的通向公式(用n,d表示)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:50:32

设各项均为正数的数列{an}的前n项和为Sn已知2a2=a1+a3数列{根号Sn}的公差为d的等差数列求数列{an}的通向公式(用n,d表示)
设各项均为正数的数列{an}的前n项和为Sn已知2a2=a1+a3数列{根号Sn}的公差为d的等差数列
求数列{an}的通向公式(用n,d表示)

设各项均为正数的数列{an}的前n项和为Sn已知2a2=a1+a3数列{根号Sn}的公差为d的等差数列求数列{an}的通向公式(用n,d表示)
{根号Sn}的公差为d的等差数列 √Sn=√S1+(n-1)d
Sn=[√S1+(n-1)d ]^2=S1+(n-1)^2d^2+2√S1(n-1)d
S2=S1+d^2+2√S1d
S3=S1+4d^2+4√S1d
a1=S1
a2=S2-S1= d^2+2√S1d
a3=S3-S2=3d^2+2√S1d
2a2=a1+a3即2d^2+4√S1d=S1+3d^2+2√S1d S1-2√S1d+d^2=0 √S1=d
√Sn=nd
Sn= n^2d^2
a1=d n>1时an=Sn-Sn-1= n^2d^2-(n-1)^2d^2=(2n-1)d^2
an=(2n-1)d^2

求数列an的通项公式(用n,d表示) An=n √S2=√S1+d =√, a4=a3+d 2;+2d√a1-a1=3(d 2;+2d√a1)-2a1 ∴ an=(n

对于n>=3,有
an-a(n-1)
=[Sn-S(n-1)]-[S(n-1)-S(n-2)]
=[根号Sn-根号S(n-1)]*[根号Sn+根号S(n-1)]-[根号S(n-1)-根号S(n-2)]*[根号S(n-1)+根号S(n-2)]
=d*[2*根号S(n-1)+d]-d*[2*根号S(n-1)-d]
=2*d^2
又因为2a2=a1+a3,...

全部展开

对于n>=3,有
an-a(n-1)
=[Sn-S(n-1)]-[S(n-1)-S(n-2)]
=[根号Sn-根号S(n-1)]*[根号Sn+根号S(n-1)]-[根号S(n-1)-根号S(n-2)]*[根号S(n-1)+根号S(n-2)]
=d*[2*根号S(n-1)+d]-d*[2*根号S(n-1)-d]
=2*d^2
又因为2a2=a1+a3,即a2-a1=a3-a2=2*d^2,所以对于n>=2,都有an-a(n-1)=2*d^2,所以an是公差为2*d^2的等差数列
所以an=a1+(n-1)*(2*d^2)
又因为2*d^2=a2-a1=(S2-S1)-a1=(根号S2-根号S1)*(根号S2+根号S1)-a1=d*(2*根号S1+d)-a1=d*(2*根号a1+d)-a1,所以a1-2d*根号a1+d^2=0,即(根号a1-d)^2=0,所以根号a1=d,a1=d^2
所以an=d^2+(n-1)*(2*d^2)=(2n-1)*d^2

收起

由题意知:d>0, sn = s1 +(n-1)d= a1 +(n-1)d,又2a2=a1+a3,
∴3a2=S3,即3(S2-S1)=S3,
∴3[( a1 +d)2-a1]2=( a1 +2d)2,
化简得:a1-2 a1 •d+d2=0,化简可得 a1 =d,即 a1=d2.
∴ Sn = a1 + (n-1)d=d+(n-1)d=nd,∴Sn...

全部展开

由题意知:d>0, sn = s1 +(n-1)d= a1 +(n-1)d,又2a2=a1+a3,
∴3a2=S3,即3(S2-S1)=S3,
∴3[( a1 +d)2-a1]2=( a1 +2d)2,
化简得:a1-2 a1 •d+d2=0,化简可得 a1 =d,即 a1=d2.
∴ Sn = a1 + (n-1)d=d+(n-1)d=nd,∴Sn=n2d2.
当n≥2时,an=Sn-Sn-1=n2d2-(n-1)2d2=(2n-1)d2,也适合n=1情形,故所求an=(2n-1)d2 .故答案为(2n-1)d2.

收起