设二次函数f(x)=ax^2+bx+c(a不等于0)中的a,b,c均为奇数.求证:方程f(x)=0无整数根.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:23:51
设二次函数f(x)=ax^2+bx+c(a不等于0)中的a,b,c均为奇数.求证:方程f(x)=0无整数根.
设二次函数f(x)=ax^2+bx+c(a不等于0)中的a,b,c均为奇数.求证:方程f(x)=0无整数根.
设二次函数f(x)=ax^2+bx+c(a不等于0)中的a,b,c均为奇数.求证:方程f(x)=0无整数根.
证明:当f(x)=0时 x=-b+-根号b2-4ac/2a
因为abc 均为奇数 所以b2为奇数,b2/2a不可能为整数,所以原方程无整数根
这是第一种情况
第二种,先假设有整数根时,abc都可为奇数
再用因式分解
ax2 +bx+c=a(x-q/a)(x-p/a)
则q/a+p/a为奇数=b,qp/a2为奇数=c
若p,q能被a整除,则可设p=am q=an 且mn 为奇数 则(p+q)/a=a(m+n)必为偶数,与命题相矛盾,所以原方程无整数根
这个结论是错的。
比如f(x)=x^2+9x+c有两个不相等实根,此时a=1,b=9,c=1
1、设二次函数f(x)=ax(平方)+bx+c满足f(x+1)-f(x)=2x
二次函数f(x)=ax^2+bx+c(a
二次函数f(x)=ax^2+bx+c(a
设函数f(x)=ax^2+bx+c (a
设二次函数 f(x)=ax^2+bx+c ,函数F(x)=f(x)-x 的两个零点为m、n(m0且0
已知二次函数f(x)=ax^2+bx+c 讨论函数f(x)的奇偶性
设abc小于0,二次函数f(x)=ax∧2+bx+c的图像可能是
已知二次函数f(x)=ax²+bx+c
二次函数f(x)=ax平方+bx+c(a
设二次函数f(x)=ax^2+bx+c的一个零点是-1,且满足[f(x)-x]*[f(x)-(x^2+1)/2]
设二次函数f(x)=ax^2+bx+c的一个零点是-1,且满足[f(x)-x]*[f(x)-(x^2+1)/2]
设二次函数y=ax^2+bx+c(a
设二次函数y=ax^2+bx+c(a
设二次函数y=ax^2+bx+c (a
已知二次函数f(x)=ax^2+bx+c,若不等式f(x)
已知二次函数f(x)=ax^2+bx+c,且不等式f(x)
设二次函数f(x)=ax方+bx+c,若f(x1)=f(x2)(其中x1不等于x2)则f((x1+x2)/2)等于
设函数f(x)=ax²+bx+c(a