1/(1*3*5)+1/(2*4*6)+1/(3*5*7)+1/(4*6*8)+1/(5*7*9)---+1/(47*49*51)+
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:24:34
1/(1*3*5)+1/(2*4*6)+1/(3*5*7)+1/(4*6*8)+1/(5*7*9)---+1/(47*49*51)+
1/(1*3*5)+1/(2*4*6)+1/(3*5*7)+1/(4*6*8)+1/(5*7*9)---+1/(47*49*51)+
1/(1*3*5)+1/(2*4*6)+1/(3*5*7)+1/(4*6*8)+1/(5*7*9)---+1/(47*49*51)+
只告诉你方法,自己慢慢算
通项1/[n(n+1)(n+2)]可拆分为(1/8)/n-(1/4)/(n+2)+(1/8)/(n+4)
因此中间项都可抵消(有规律1/8,-1/4,1/8),最后剩下前两项和后两项的一部分
e
简算:1/1*2+1/2*3+1/3*4+1/4*5+1/5*6
巧算:(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4+1/5+1/6)-(1+1/2+1/3+1/4+1/5+1/6)*(1/2+1/3+1/4+1/5)(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4+1/5+1/6)-(1+1/2+1/3+1/4+1/5+1/6)*(1/2+1/3+1/4+1/5)=====
1+1+1+1+11+-1-1-1-1-2-3-4-5-6等于
1-1/2+1/3-1/4+1/5-1/6+1/7.-1/50=?
1/1*3+1/2*4+1/3*5+1/4*6+.+1/100*102=?
2×3/1+3×4/1+4×5/1+5×6/1+.199×200/1=?
1+1+1+1+1+1+1+1+1+2+5+4+8+3+6+2+1+4等于多少?
1*1/2+1/2*1/3+1/3*1/4+1/4*1/5+1/5*1/6+1/6*1/7用简便方法怎么做?
1.(1+1/2+1/3+1/4)*(1/2+1/3+1/4+1/5)-(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4)=2.(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4+1/5+1/6)-(1+1/2+1/3+1/4+1/5+1/6)*(1/2+1/3+1/4+1/5)=
1/1*2*3+1/2*3*4+1/3*4*5+1/4*5*6---------+1/48*49*50
1+2+3+1+2+3-4+5+6
1/2*1/3+1/3*1/4+1/4*1/5+1/5*1/6 (简便方法)
1/2+1/6+1/12+1/20+1/30;1/2×3+1/3×4+1/4×5+1/5×6+1/6x7
1+1/2+1/3+1/4+1/5+1/6+.+1/n极限多少?
1+1+1+2+1+3+1+4+1+5+1+6
1/2+1/3+1/4+1/5+1/6+1/7+.1/20=
如何证明1+1/2+1/3+1/4+1/5+1/6+...+1/2014
1/2{1/3[1/4(1/5x-1)-6]+4}=1