1/(1*3*5)+1/(2*4*6)+1/(3*5*7)+1/(4*6*8)+1/(5*7*9)---+1/(47*49*51)+

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:24:34

1/(1*3*5)+1/(2*4*6)+1/(3*5*7)+1/(4*6*8)+1/(5*7*9)---+1/(47*49*51)+
1/(1*3*5)+1/(2*4*6)+1/(3*5*7)+1/(4*6*8)+1/(5*7*9)---+1/(47*49*51)+

1/(1*3*5)+1/(2*4*6)+1/(3*5*7)+1/(4*6*8)+1/(5*7*9)---+1/(47*49*51)+
只告诉你方法,自己慢慢算
通项1/[n(n+1)(n+2)]可拆分为(1/8)/n-(1/4)/(n+2)+(1/8)/(n+4)
因此中间项都可抵消(有规律1/8,-1/4,1/8),最后剩下前两项和后两项的一部分

e