lim(n→∞) 1/n(2n!/n!)^1/n的极限 用定积分求
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:06:46
lim(n→∞) 1/n(2n!/n!)^1/n的极限 用定积分求
lim(n→∞) 1/n(2n!/n!)^1/n的极限 用定积分求
lim(n→∞) 1/n(2n!/n!)^1/n的极限 用定积分求
答案是 4/e
详解如图:
4/e
lim (n!+(n-1)!+(n-2)!+(N-3)!+⋯..+2!+1)/n!其中n→∞
lim(n→∞) ((2n!/n!*n)^1/n的极限用定积分求是lim(n→∞) 1/n(2n!/n!)^1/n 不好意思
求lim n→∞ (1+2/n)^n+3
lim(n→∞)[1-(2n/n+3)]
lim(n→∞)(2n-1/n+3)
lim(n→∞)[1/(3n+1)+1/(3n+2)+~1/(3n+n)]
求极限lim [ 2^(n+1)+3^(n+1)]/2^n+3^n (n→∞)
lim(n→∞) 根号n+2-根号n+1/根号n+1-根号n
计算lim(n→∞)(1^n+2^n+3^n)^(1/n)
lim n →∞ (1^n+3^n+2^n)^1/n,求数列极限
lim(n→∞)(3n^3-2n+1)/n^3+n^2 快
求极限lim(x→∞)(1/n+2/n+3/n..+n/n)
用夹逼定理求lim(n→∞)[√(n^2+n)-n]^(1/n)
求极限lim(n→∞)(1/n²+2/n²+...+n/n²)
用夹逼定理求lim(n→∞)√[(n^2+n)-n]^(1/n)
求lim n→+∞(1/n^k+2/n^k+ +n/n^k)有三种情况,
lim x→n (√n+1-√n)*√(n+1/2)lim x n→∞ (√n+1-√n)*√(n+1/2)
lim(n→∞) 1/(n+1)-2/(n+1)+3/(n+1)-4/(n+1)+...+[(2n-1)/(n+1)]-[(2n)/(n-1)]求极限