高数极限证明:lim(x→0) (2x+1)\(x-1)=-1 ..
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 05:21:35
高数极限证明:lim(x→0) (2x+1)\(x-1)=-1 ..
高数极限证明:lim(x→0) (2x+1)\(x-1)=-1 ..
高数极限证明:lim(x→0) (2x+1)\(x-1)=-1 ..
对于
|(2x+1)/(x-1)+1|
=|(3x)/(x-1)|
=3*|x-0|/|x-1|
限制x的范围:-1/2
<3|x-0|/(1/2)
=6*|x-0|
这时,取:δ=min{1/2,ε/6}
就有:|(2x+1)/(x-1)+1|<ε
因此,任意ε>0,存在δ>0,当|x-0|<δ,有|(2x+1)/(x-1)+1|<ε
因此lim (x→0) lim (2x+1)/(x-1)=-1
有不懂欢迎追问
x->0,分子分母都不等于0 ,求解只需直接代入。