设函数f(x)的定义域关于原点对称,且满足 (1) f(x1-x2)=[f(x1)*f(x2)+1]/[f(x2)-f(x1)];(2)存在正常数a,使 f(a)=1.求证:(1)f(x)是奇函数;(2)f(x)是周期函数,并且有一个周期为4a.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 03:46:41

设函数f(x)的定义域关于原点对称,且满足 (1) f(x1-x2)=[f(x1)*f(x2)+1]/[f(x2)-f(x1)];(2)存在正常数a,使 f(a)=1.求证:(1)f(x)是奇函数;(2)f(x)是周期函数,并且有一个周期为4a.
设函数f(x)的定义域关于原点对称,且满足 (1) f(x1-x2)=[f(x1)*f(x2)+1]/[f(x2)-f(x1)];(2)存在正常数a,
使 f(a)=1.求证:(1)f(x)是奇函数;(2)f(x)是周期函数,并且有一个周期为4a.

设函数f(x)的定义域关于原点对称,且满足 (1) f(x1-x2)=[f(x1)*f(x2)+1]/[f(x2)-f(x1)];(2)存在正常数a,使 f(a)=1.求证:(1)f(x)是奇函数;(2)f(x)是周期函数,并且有一个周期为4a.
(1)
f(x1-x2)=[f(x1)f(x2)+1]/[f(x2)-f(x1)]
设x=x1-x2
f(-x)=f(x2-x1)=[f(x2)f(x1)+1]/[f(x1)-f(x2)]
=-[f(x1)f(x2)+1]/[f(x2)-f(x1)]=-f(x1-x2)=-f(x)
∴f(x)是奇函数
(2)
f(a)=1,f(-a)=-1
f(x-a)=[f(x)+1]/[1-f(x)]
f(x+a)=[-f(x)+1]/[-1-f(x)]=[f(x)-1]/[1+f(x)]=-1/f(x-a)
f(x+2a)=f(x+a+a)=-1/f(x+a-a)=-1/f(x)
f(x-a)=-1/f(x+a)
f(x-2a)=f(x-a-a)=-1/f(x-a+a)=-1/f(x)
∴f(x+2a)=f(x-2a)
∴f(x)是周期函数,4a是一个周期

设f(x)是任意一个函数,且定义域关于原点对称,则函数F(x)=1/2[f(x)+f(-x)]的奇偶性 设函数f(x)的定义域关于原点对称,把它写成一个奇函数与偶函数之和 设函数f(x)的定义域关于原点对称,且对于定义域内任意x1≠x2有f(x1-x2)=[1+f(x1)+f(x2)]/[f(x2)-f(x1)]求证f(x)是奇函数. 设函数f(x)=log以a为底的(x^2+ax+1/4a)(a>0且a不等于1)的定义域关于原点对称求f(x)的最大值F(a) 1.奇,偶函数的定义域都关于原点对称 这句话怎么理解2.设f(x)=x-a是奇函数,求a函数怎样才算定义域都关于原点对称 函数f(x)的定义域为(-1,1)时,函数什么时候关于原点对称,什么时候关于原点不对称? 若函数f(x)的定义域关于原点对称,且f(x)=x2lg(x+根号x2+1) 求奇偶性 怎样判断函数f(x)的定义域是否关于原点对称?比如呢? 怎么才算是函数f(x)的定义域关于原点对称? 函数y=f(x)与y=g(x)有相同的且关于原点对称的定义域,它们都不是常数函数,且对定义域中任意x,有f(x)+...函数y=f(x)与y=g(x)有相同的且关于原点对称的定义域,它们都不是常数函数,且对定义域中任 若函数f(x)的定义域关于原点对称,则f(x)乘f(-x)为偶函数怎么证明 f(x)是任意一个函数,且定义域关于原点对称,判断下列函数的奇偶性1)F(x)=1/2[f(x)+f(-x)]2) G(x)=1/2[f(x)-f(-x)] 设函数y=f(x)存在反函数,且函数g(x)与函数f-1(x)关于原点对称,则g(x+1)是设函数y=f(x)存在反函数,且函数g(x)与函数f-1(x)关于原点对称,则g(x+1)是?g(x+1)=-f-1(-x-1)为什么?怎么推的? 函数f(x)的定义域关于原点对称是函数f(x)为奇函数的__条件? 一:已知f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)=1/(2x+1)求f(x)、g(x)的解析式二:设f(x)是任意一个函数,且定义域关于原点对称.求证:f(x)一定可以表示成一个奇函数与一个偶函数的和.三:①已知f( 设函数f(x)的定义域为(-∞,+∞),则函数f(x)-f(-x)的图形关于( )对称. 设函数f(x)的定义域关于原点对称,且对于定义域内的任意的x1≠x2,都有f(x1-x2)=[1+f(x1)*f(x2)]/[f(x1)-f(x2)],则函数f(x)是 函数(填奇函数或偶函数)答案是奇函数,请给出详细的判断步骤,否则不给分. 设f(x)是一个定义域关于原点对称的函数,则F1(x)=f(x)+f(-x)为偶函数,F2(x)=f(x)-(-x)为奇函数.