设函数f(x)=根号3倍的sinxcosx+cosx.cosx+m1.写出函数f(x)的最小正周期T及单调递增区间.2.若x属于【-∏/6,∏/3】时,函数f(x)的最小值为2,求此时函数f(X)的最大值,并指出x取何值时f(X)取得最大值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 20:59:37

设函数f(x)=根号3倍的sinxcosx+cosx.cosx+m1.写出函数f(x)的最小正周期T及单调递增区间.2.若x属于【-∏/6,∏/3】时,函数f(x)的最小值为2,求此时函数f(X)的最大值,并指出x取何值时f(X)取得最大值
设函数f(x)=根号3倍的sinxcosx+cosx.cosx+m
1.写出函数f(x)的最小正周期T及单调递增区间.
2.若x属于【-∏/6,∏/3】时,函数f(x)的最小值为2,求此时函数f(X)的最大值,并指出x取何值时f(X)取得最大值

设函数f(x)=根号3倍的sinxcosx+cosx.cosx+m1.写出函数f(x)的最小正周期T及单调递增区间.2.若x属于【-∏/6,∏/3】时,函数f(x)的最小值为2,求此时函数f(X)的最大值,并指出x取何值时f(X)取得最大值
f(x)=√3*2sinxcosx/2+2cosxcosx/2+m=)=√3sin2x/2+(cos2x+1)/2+m=√3sin2x/2+cos2x/2+m+1/2=sin(2x+π/6)+m+1/2,最小正周期t=2π/2=π,
由正弦图像可以看出,当2x+π/6∈[-π/2+2nπ,π/2+2nπ]是属于单调递增区间.所以当x∈[-π/3+nπ,π/6+nπ]为函数f(x)的单调递增区间.
由单调递增区间可以看出,x∈[-π/6,π/6]是单调递增区间,[π/6,π/3]为单调递减区间.x∈[-π/6,π/6]时最小值为f(-π/6)=m,x∈[π/6,π/3]时最小值为f(π/3)=m+1,显然,在x∈[-π/6,π/3]时,最小值为m=2,最大值f(x)=f(π/6)=3.5

已知函数f(x)=sinx-acosx的一个零点是π/41,求实数a的值 2,设g(x)=f(x)f(-x)+(2根号3)sinxcos+1,求g(x)的对称中心 求函数f(x)=5倍根号3cos^2+根号3sin^2x-4sinxcos(π/4≤x≤7π/24)的最小值,并求出起单调区间 已知函数f(x)=2sinxcos(x+π/3)+根号3cos的平方x+1/2sin2x求函数f的最小正周期 设函数f(x)=2cosxsin(x+π/6)+2sinxcos(x+π/6)⑴当x属于0到2分之π的闭区间求f(x)的值域⑵设三角形ABC的三个内角ABC所对的三边依次为abc已知f(A)=1,a=根号7,三角形ABC面积为2分之3倍根号3求b+c 设函数f(x)=2cosxsin(x+π/6)+2sinxcos(x+π/6)⑴当x属于0到2分之π的闭区间求f(x)的值域⑵设三角形ABC的三个内角ABC所对的三边依次为abc已知f(A)=1,a=根号7,三角形ABC面积为2分之3倍根号3求b+c. 已知函数f(x)=2sinxcos(x=pai/3)+根号3cos平方x+1/2sin2x,求f(x)的最小正周期 已知f(x)=2cos平方x-2根号3sinxcos-1(X属于r) 求函数f(x)的周期,对称轴方程. 函数f(x)=2sinxcos((3∏/2)+x)+根号3sin(∏+x)cosx+sin((∏/2)+x)cosx-1/2我要详细的过程 设函数f(x)=cos(根号3倍的x+a)(0 设函数f(x)=2sinxcos^2φ/2+cosxsinφ-sinx(0 设函数f(x)=2sinxcos^2φ/2+cosxsinφ-sinx(0 设函数f(x)=2sinxcos^2(a/2)+cosxsina-sinx(0 设函数f(x)=2sinxcos^2P/2+cosxsinP-sinx(0 已知函数f(x)=cos²x+2根号3sinxcos²x-sin²x,x∈R求函数f(x)的最小正周期 函数f(x)=(2sinxcos^2x)/(1+sinx)的值域为函数f(x)=2sinxcos^2x/1+sinx的值域为? 设函数f x =2cosxsin(x+π/6)+2sinxcos(x+设函数f x =2cosxsin(x+π/6)+2sinxcos(x +π/6)(1)x属于[0.π/2]时函数值域 求函数F(X)=5根号3cosX的平方+根号3sinX的平方-4sinXcos...的最小值 设函数f(x)=2sinxcos^2θ/2+cosxsinθ-sinx在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=根号2,f(A)=根号3/2,求角C.0