已知向量a=(cosx+sinx,sinx),b=(cosx+sinx,-2sinx),且f(x)=a·b.求f(x)在x属于[0,π/2]的值域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:05:37

已知向量a=(cosx+sinx,sinx),b=(cosx+sinx,-2sinx),且f(x)=a·b.求f(x)在x属于[0,π/2]的值域
已知向量a=(cosx+sinx,sinx),b=(cosx+sinx,-2sinx),且f(x)=a·b.求f(x)在x属于[0,π/2]的值域

已知向量a=(cosx+sinx,sinx),b=(cosx+sinx,-2sinx),且f(x)=a·b.求f(x)在x属于[0,π/2]的值域
f(x)=a·b=(cosx+sinx)²-2sin²x
=cos²x+sin²x+2sinxcosx-2sin²x
=1-2sin²x+2sinxcosx
=1-(1-cos2x)+sin2x
=cos2x+sin2x
=√2sin(2x+π/4)
0=

根据向量积的算法:f(x)=a·b(cosx+sinx)^2+(-2sinx)^2=1+2sinxcosx+4sinx^2=(1+2sinx)^2
设0f(x1)-f(x2)=(1+2sinx1)^2-(1+2sinx2)^2=(2+2sinx1+2sinx2)(2sinx1-2sinx2)=4(sinx1-sinx2)+4(sinx1^2-sinx2^2)...

全部展开

根据向量积的算法:f(x)=a·b(cosx+sinx)^2+(-2sinx)^2=1+2sinxcosx+4sinx^2=(1+2sinx)^2
设0f(x1)-f(x2)=(1+2sinx1)^2-(1+2sinx2)^2=(2+2sinx1+2sinx2)(2sinx1-2sinx2)=4(sinx1-sinx2)+4(sinx1^2-sinx2^2),由于sinx在[0,π/2]是增函数,所以由0

收起

已知向量a=(sin x,1),向量b=(sinx,cosx+1/3) (0 已知向量a=(cosα,sinα),b=(cosx,sinx),c=(sinx+2sinα,cosx+2cosα),其中0 已知向量a=(sinx+cosx,sinx-cosx),则向量a的模(长度)等于多? 已知向量a=(sinx,cosx),b=(cosx,sinx-2cosx),0 已知向量a=(sinx,cosx),b=(cosx,sinx-2cosx),0 1证明 sin(2α+β)/sin2α-2cos(α+β)=sinβ/sinα 2已知向量a=(cosx,sinx),向量b=(cosx,-2),求f(x)=向2已知向量a=(cosx,sinx),向量b=(cosx,-2),求f(x)=向量a乘以向量b的最大值 数学题已知向量a=(2,sin),向量b=(sinx平方,2cosx).函数f(x)=向量a乘向量b 求f(x) 已知向量a=(cosα,sinα),b=(cosx,sinx),c=(sinx+2sinα,cosx+2cosα),其中0第一问是向量b与向量c相乘的最小值和x值 已知sinx=2/3,求(cosx-sinx/cosx+sin)+(cosx+sin/cosx-sinx)的值. 已知向量a=(sinx-cosx,2cosx),b=(sinx+cosx,sinx).若向量a点乘向量b=3/5,求sin4x的值a*b = x1x2 + y1y2 = 3/5即 (sinx-cosx)(sinx+cosx) + 2cosxsinx = 3/5sin(2x) - cos(2x) = 3/5第三步是为什么? 已知a向量=(2cosx,sinx),b向量=(sin(x+π/3),cosx-根号3sinx) f(x)=a向量×b向量 1.求fx最小正周期.2.fx值域. 已知向量a=(2sinx,2cosx),b=(cosx,sinx) 已知向量a=(cosa,sina),向量b=(2,-1),若向量a垂直于向量b,求(sinx-cosx)/(sinx+cosx)1 ,若a垂直于b,求(sinx-cosx)/(sinx+cosx)2,若|a-b|=2,x属于(0,π/2),求sin(x+π/4)的值 已知向量a=(sinx,3/4),b=(cosx,-1)当a//b时,求(cosx)^2-sin(2x)的值 已知向量a=(sinx,1),b=(cosx,-1/2),当a平行于b时,求(2sinxcosx+cosx)/(sin^2x-cos^2x) 已知a向量=(cos2x,sin2x),b向量=(cosx,sinx)且x属于【0,π】求函数f(x)=a向量*b向量-|a向量+b向量|*sin(x/2)的最小值 已知向量a=(2cosX,cosX),向量b=(cosX,2sinX),记f(x)=a 已知向量a=(1+sin2x,sinx-cosx),向量b=(1,sinx+cosx),f(x)=向量a*向量b求f(x)的值域