已知数列{an}的前n项和为Sn,a1=-2/3,满足Sn+1/Sn+2=an(n>=2),计算S1,S2,S3,S4,并猜想Sn表达式.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:51:29

已知数列{an}的前n项和为Sn,a1=-2/3,满足Sn+1/Sn+2=an(n>=2),计算S1,S2,S3,S4,并猜想Sn表达式.
已知数列{an}的前n项和为Sn,a1=-2/3,满足Sn+1/Sn+2=an(n>=2),计算S1,S2,S3,S4,并猜想Sn表达式.

已知数列{an}的前n项和为Sn,a1=-2/3,满足Sn+1/Sn+2=an(n>=2),计算S1,S2,S3,S4,并猜想Sn表达式.
S(1) = a(1) = -2/3
S(2) = S(1) + a(2) = a(2) - 2/3,a(2) = S(2) + 2/3
S(2) + 1/S(2) + 2 = a(2) = S(2) + 2/3,
1/S(2) = -4/3,
S(2) = -3/4
S(3) = S(2) + a(3) = a(3) - 3/4,a(3) = S(3) + 3/4
S(3) + 1/S(3) + 2 = a(3) = S(3) + 3/4,
1/S(3) = -5/4,
S(3) = -4/5.
S(4) = S(3) + a(4) = a(4) - 4/5,a(4) = S(4) + 4/5.
S(4) + 1/S(4) + 2 = a(4) = S(4) + 4/5,
1/S(4) = -6/5,
S(4) = -5/6.
猜想
S(n) = -(n+1)/(n+2),n = 1,2,...
---------
证明
n = 1时,S(1) = -2/3,结论成立.
设 n = k时,有S(k) = -(k+1)/(k+2)
当n = k+1时,
S(k+1) = S(k) + a(k+1) = a(k+1) - (k+1)/(k+2),
a(k+1) = S(k+1) + (k+1)/(k+2),
S(k+1) + 1/S(k+1) + 2 = a(k+1) = S(k+1) + (k+1)/(k+2),
1/S(k+1) = -(k+3)/(k+2),
S(k+1) = -(k+2)/(k+3),结论成立.
所以,
由归纳法,猜想正确.

楼上的方法很好嘛!归纳法虽说是大学的课程,但是判高考卷的都是大学老师,所以嘛。。。什么方法都行!

数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列 已知数列{an}的前n项和为Sn,若a1=1/2,Sn=n^2an-n(n-1)求Sn,an 数列:已知数列{an}前 n项和为Sn,且a1=2,4Sn=ana(n+1).求数列{an}的通项公式. 【急!已知Sn为数列{an}的前n项和 a1=1 Sn=n的平方 乘以an 求数列{an}的通项公 已知Sn为数列{an}的前n项和,a1=1,Sn=n²•an,求数列{an}的通项公式 已知数列{an}的前N项和为sn a1=1an+1=sn+3n+1,求数列{an}的通项公式 设数列An的前n项和为Sn,已知a1=1,An+1=Sn+3n+1求证数列{An+3}是等比数列 已知数列an的前n项和为Sn,Sn=三分之一×【a1-1】求a1,a2 .求证数列an是等比数列 已知数列{an}的前n项和为Sn,又a1=2,nAn+1=sn+n(n+1),求数列{an}的通项公式 已知Sn为数列的前n项和,a1=2,2Sn=(n+1)an+n-1,求数列an的通项公式 已知数列《an>的前n项和为sn,a1=2,na=sn,求s2011 已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an已知数列{an}a1=2前n项和为Sn 且满足Sn +Sn-1=3an 求数列{an}的通项公式an 已知数列{an}的前n项和为Sn,a1=1/2,且Sn=n^2An-n(n-1),求an 已知数列 an前n项和为Sn,a1=1,Sn=2a(n+1),求Sn 已知数列An中,其前n项和为Sn,A1=1,且An+1=2Sn,求An的通项公式和Sn 已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列 已知数列的前N项和为SN,A1=2,2sn的平方=2ansn-an(n≥2)求an和sn 已知数列{an} 的前n项和为sn,且an=sn *s(n-1)a1=2/9 求证:{1/sn}为等差