已知点P是双曲线x^2/a^2-y^2/b^2=1上除顶点外的右支上的任意一点,F1,F2是它的焦点,∠PF1F2=A,∠PF1F2=B,求证:tanA/2乘cotB/2=(c-a)/(c+a)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:39:01

已知点P是双曲线x^2/a^2-y^2/b^2=1上除顶点外的右支上的任意一点,F1,F2是它的焦点,∠PF1F2=A,∠PF1F2=B,求证:tanA/2乘cotB/2=(c-a)/(c+a)
已知点P是双曲线x^2/a^2-y^2/b^2=1上除顶点外的右支上的任意一点,F1,F2是它的焦点,
∠PF1F2=A,∠PF1F2=B,求证:tanA/2乘cotB/2=(c-a)/(c+a)

已知点P是双曲线x^2/a^2-y^2/b^2=1上除顶点外的右支上的任意一点,F1,F2是它的焦点,∠PF1F2=A,∠PF1F2=B,求证:tanA/2乘cotB/2=(c-a)/(c+a)
设AF1=r1
AF2=r2
由正弦定理:r1/sinB=r2/sinA=2c/sin(A+B)
而r1-r2=2a
由合分比公式得:(r1-r2)/(sinB-sinA)=2c/sin(A+B)
2a/(sinB-sinA)=2c/sin(B+A)
2a/2cos[(B+A)/2]sin[(B-A)/2]=2c/2sin[(B+A)/2]cos[(B+A)/2 ]
a/sin[(B-A)/2]=c/sin[(B+A)/2 ]
c/a=sin[(B+A)/2]/sin[(B-A)/2]
(c-a)/(c+a)={sin[(B+A)/2]-sin[(B-A)/2]}/{sin[(B+A)/2]+sin[(B-A)/2]}
=[2cos(B/2)sin(A/2)]/[2sin(B/2)cos(A/2)]
=tanA/2*cotB/2
即:tanA/2乘cotB/2=(c-a)/(c+a )

已知双曲线x^2/4-y^2=1,P是双曲线上一点,求证:P点到双曲线两条渐近线已知双曲线x^2/4-y^2=1,P是双曲线上一点1 求证:P点到双曲线两条渐近线的距离的乘积是一个定值2 已知点A(3,0),求|PA|的最小 已知P是双曲线x^2/2-y^2=1上任一点,求点A(m,0)(m>0)与点P之间的距离的最小值? 已知F是双曲线x^2/4-y^2/12=1的左焦点A(0,3),P是双曲线右支上的动点,则|PF|+|PA|的最小值是?..已知F是双曲线x^2/4-y^2/12=1的左焦点A(0,3),P是双曲线右支上的动点,则|PF|+|PA|的最小值是? 已知双曲线的渐进线方程是y=土2/3x,并且双曲线经过点P(3,√7),求此双曲线的标准方程 已知点A(4,6),点P是双曲线C:X^2-Y^2/15=1上的一个动点,点F是双曲线C的有焦点,则PA+PF的最小值______.是右焦点 已知点A(4,6),点P是双曲线C:x^2-y^2/15=1上的一个动点,点F是双曲线C的右焦点,则|PA|+|PF|的最小值 已知点A(3,2),F(2,0),点P是双曲线x^2-y^2/3=1上的一点,求|PA|+|PF的最小值| 已知双曲线y^2-X^2/2=1,过点p(1,1)能否作一条直线l,于双曲线交于A,B两点,且点p是线段AB的中点 已知双曲线x-y/2=1,过点p(1,1)能否做一条直线 L,与双曲线交于A,B两点,且点P是线段AB的中点? 已知双曲线y=2/x y=k/x的部分图像如图所示P是y轴正半轴上的一点过点P作AB//x轴分别交两个图像于点A 、B 已知双曲线方程为x^2-y^2=1,直线L过(3,1)且与双曲线渐近线平行,则直线l与双曲线交点几已知双曲线渐近线为Y=正负X,且双曲线过点P(4,2根3)求双曲线方程还有道:Y=-X^2+2xz在点A(-1,-3)处切 已知双曲线x^2-1/2y^2=1,过点P(1,1)能否做一条直线l,和双曲线交于A,B两点,并且过P是线段AB的中点? 已知点F是双曲线x^2/4-y^2/12=1的左焦点,A(1,4),点P是双曲线右支上的一点,求|PA|+|PF|最小值 已知点F是双曲线x^2/4-y^2/12=1的左焦点,A(1,4),点P是双曲线右支上的一点,求|PA|+|PF|最小值其中过程PF1+PA=AF1看不懂, 已知F1,F2是双曲线x^2/a^2-y^2/b^2=1(a,b>0)的两个焦点,过点F2且垂直于x轴的直线交双曲线于P且角F1PF2=60已知F1,F2是双曲线x^2/a^2-y^2/b^2=1(a,b>0)的两个焦点,过点F2且垂直于x轴的直线交双曲线于P,且角F1PF2 已知F1,F2是双曲线x^2/a^2-y^2/b^2=1(a,b>0)的两个焦点,过点F2且垂直于x轴的直线交双曲线于P且角F1PF2=60已知F1,F2是双曲线x^2/a^2-y^2/b^2=1(a,b>0)的两个焦点,过点F2且垂直于x轴的直线交双曲线于P,且角F1PF2 已知双曲线M过点P(4,√6/2),且它的渐近线方程是x±2y=0求双曲线M的方程 已知双曲线的一条渐近线方程是X—2Y=0,且过点P(4,3),求双曲线的标准方程