设双曲线x^2/a^2-y^2/b^2=1 两焦点为F1、F2,点Q为双曲线上除顶点外的任一点,过焦点F1作角F1QF2的平分线的垂线,垂足为P,则P点的轨迹为:
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 23:16:16
设双曲线x^2/a^2-y^2/b^2=1 两焦点为F1、F2,点Q为双曲线上除顶点外的任一点,过焦点F1作角F1QF2的平分线的垂线,垂足为P,则P点的轨迹为:
设双曲线x^2/a^2-y^2/b^2=1 两焦点为F1、F2,点Q为双曲线上除顶点外的任一点,过焦点F1作
角F1QF2的平分线的垂线,垂足为P,则P点的轨迹为:
设双曲线x^2/a^2-y^2/b^2=1 两焦点为F1、F2,点Q为双曲线上除顶点外的任一点,过焦点F1作角F1QF2的平分线的垂线,垂足为P,则P点的轨迹为:
延长F1P ,交QF2(或它的延长线)与M
则 |QF1|=|QM|
|F2M|=| |QM|-|QF2| |=| |QF1|-|QF2| |=2a
三角形F1F2M中,OP是中位线
|OP|=|F2M |/2=a
所以P的轨迹是圆,圆心是原点,半径为a
方程为x²+y²=a²
设双曲线x^2/a^2 - y^2/b^2=1 (0
设双曲线x^2/a^2-y^2/b^2=1(0
设双曲线X^2/a^2-Y^2/b^2=1(0
设双曲线x^2/a^2 - y^2/b^2=1 (0
设双曲线(x/a)^2-(y/b)^2=1(0
设双曲线x^2/a^2-y^2/b^2 (0
有关双曲线离心率问题设双曲线y^2/a^2-X^2/b^2=1(a>0,b>0)的渐近线与抛物线y=x^2+1相切,则该双曲线的离心率=
双曲线x^2-4Y^2=1,设A(m,0) B(1/m,0) 0
设双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的渐近线与y=x^2+1相切,求e范围
已知双曲线x^2/a^2-y^2/b^2=1(a,b>0),设x/a+y/b=t,若t为参数,求出双曲线参数方程?(跪求~~)
若A,B两点关于Y轴对称,且A在双曲线Y=1/2X上,B点在直线Y=3+X上,设A坐标为(a,b),则a*a/b+b*b/a=?
设 分别为双曲线 的左右焦点,为双曲线的左顶点,以 为直径的圆交双曲线某条渐近线于 两点,且满足 ,则设F1、F2 分别为双曲线X^2/a^2 - Y^2/b^2 = 1(a>0,b>0) 的左右焦点,A 为双曲线的左顶点,以 F1、F2
若A.B两点关于y轴对称,且点A在双曲线y=1/2x上,点B在直线y=-x+3上,设A(a,b),则a/b+b/a=?
若A.B两点关于y轴对称,且点A在双曲线y=1/2x上,点B在直线y=-x+3上,设A(a,b),则a/b+b/a=?
设双曲线x2+y2=1上一点P(a,b)到直线y=x的距离为根号2,其中a>b.求a,b
设双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的渐近线与抛物线y=x^2+1相切,则该双曲线的离心率是
设双曲线(x^2/a^2)-(y^2/b^2=1 (a>0,b>0)的渐近线与抛物线y=x^2+1相切,该双曲线的离心率?
设双曲线y^2/a^2-x^2/b^2=1(a>0,b>0)的渐近线与抛物线y=x^2+1相切,则该双曲线的离心率等于多少