再求值(1-x)/(x+2)²÷[x-2+3/(x+2)],其中x=1/2答案是-4/15,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:33:25

再求值(1-x)/(x+2)²÷[x-2+3/(x+2)],其中x=1/2答案是-4/15,
再求值
(1-x)/(x+2)²÷[x-2+3/(x+2)],其中x=1/2
答案是-4/15,

再求值(1-x)/(x+2)²÷[x-2+3/(x+2)],其中x=1/2答案是-4/15,
原式=(1-x)/(x+2)²÷{[(x-2)(x+2)+3]/(x+2)}
=(1-x)/(x+2)²÷[(x²-4+3)/(x+2)]
=(1-x)/(x+2)²÷[(x²-1)/(x+2)]
=(1-x)/(x+2)²×[(x+2)/(x²-1)]
=(1-x)(x+2)/[(x+2)²(x²-1)]
=-(x-1)(x+2)/[(x+2)²(x+1)(x-1)]
=-1/[(x+2)(x+1)]
=-1/(1/2+2)(1/2+1)
=-1/(15/4)
=-4/15

-3/20

(1-x)/(x+2)²÷[x-2+3/(x+2)]
=(1-x)/(x+2)²÷【(x^2-1)/(x+2)】
=(1-x)/(x+2)^2*(x+2)/(x^2-1)
=-1/(x+1)(x+2)
将x=1/2带入:原式=-1/[(3/2)*(5/2)]=-4/15

化简后:(1-x)/4 把x=1/2代入 得1/8