已知(sinα-cosα)/(sinα+cosα)=1/3,则cos(π/3+α)的四次方-cos(π/6-α)的四次方的值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:41:47

已知(sinα-cosα)/(sinα+cosα)=1/3,则cos(π/3+α)的四次方-cos(π/6-α)的四次方的值为
已知(sinα-cosα)/(sinα+cosα)=1/3,则cos(π/3+α)的四次方-cos(π/6-α)的四次方的值为

已知(sinα-cosα)/(sinα+cosα)=1/3,则cos(π/3+α)的四次方-cos(π/6-α)的四次方的值为
(sinα-cosα)/(sinα+cosα)=1/3
sinα=2cosα (cosα)^2=1/5
cos(π/3+α)的四次方-cos(π/6-α)的四次方
=[cos(π/3+α)]^4-[sin(π/3+α)]^4
={[cos(π/3+α)]^2-[sin(π/3+α)]^2}*{[cos(π/3+α)]^2+[sin(π/3+α)]^2}
=cos[2(π/3+α)]*1
=-cos(π/3-2α)
=-[cos(π/3)cos2α+sin(π/3)sin2α]
=-[(1/2)cos2α+(√3/2)sin2α]
=-(1/2)[2(cosα)^2-1]-(√3/2)(2sinαcosα)
=-1/5+1/2-√3cosα*(2cosα)
=3/10-2√3(cosα)^2
=3/10-2√3/5

2*sinx=4*cosx,so tanx=1/2,