已知函数f(x)=2^(x^2-ax-3)是偶函数.(1)试确定a的值及此时的函数解析式;(2)证明函数f(x)在区间[负无穷,0]上是减函数;(3)当x属于[-2,0]时,求函数f(x)的值域一定要有具体过程,只限今天,过期不
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:40:54
已知函数f(x)=2^(x^2-ax-3)是偶函数.(1)试确定a的值及此时的函数解析式;(2)证明函数f(x)在区间[负无穷,0]上是减函数;(3)当x属于[-2,0]时,求函数f(x)的值域一定要有具体过程,只限今天,过期不
已知函数f(x)=2^(x^2-ax-3)是偶函数.(1)试确定a的值及此时的函数解析式;(2)证明函数f(x)在区间[负无穷,0]上是减函数;(3)当x属于[-2,0]时,求函数f(x)的值域
一定要有具体过程,只限今天,过期不候,非诚勿扰!
已知函数f(x)=2^(x^2-ax-3)是偶函数.(1)试确定a的值及此时的函数解析式;(2)证明函数f(x)在区间[负无穷,0]上是减函数;(3)当x属于[-2,0]时,求函数f(x)的值域一定要有具体过程,只限今天,过期不
(1)函数f(x)为偶函数则,f(x)=f(-x)
2^(x^2-ax-3)=2^(x^2+ax-3)对任意实数恒成立
则,-a=a,所以a=0
所以f(x)=2^(x^2-3)
(2)
令t=x^2-3
则,y=f(x)=2^t
易知,t关于x的函数在(负无穷.0]上单调递减
y关于t的函数在(负无穷,0]上单调递减
内函数单调递减,外函数单调递减
则,原函数在(负无穷,0]上单调递减;
(3)
由(2)知f(x)在区间[负无穷,0]上是减函数
则,在定义域[-2,0]上有
f(0)=
1.偶函数满足f(-x)=f(x)
那么2^(x^2+ax-3)=2^(x^2-ax-3)
所以a=0
f(x)=2^(x^2-3)
2.当x∈(-∞,0]
x^2-3是单调递减的
又因为2^x在实域上是单调递增的
所以f(x)=2^(x^2-3)在(-∞,0]上是单调递减的
3.当x属于[-2,0]时,
f(x)=2^(x^...
全部展开
1.偶函数满足f(-x)=f(x)
那么2^(x^2+ax-3)=2^(x^2-ax-3)
所以a=0
f(x)=2^(x^2-3)
2.当x∈(-∞,0]
x^2-3是单调递减的
又因为2^x在实域上是单调递增的
所以f(x)=2^(x^2-3)在(-∞,0]上是单调递减的
3.当x属于[-2,0]时,
f(x)=2^(x^2-3)是减函数,所以最大值为f(-2)=2,最小值为f(0)=1/8
即值域为[1/8,2]
收起