在△ABC中,A,B,C为它的三个内角,设向量p=(cosB/2,sinB/2),q=(cosB/2,-sinB/2),且向量p与向量q的夹角为π/3.(1)求角B的大小(2)已知tanC=根号3/2,求(sin2AcosA-sinA)/sin2Acos2A的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:57:41

在△ABC中,A,B,C为它的三个内角,设向量p=(cosB/2,sinB/2),q=(cosB/2,-sinB/2),且向量p与向量q的夹角为π/3.(1)求角B的大小(2)已知tanC=根号3/2,求(sin2AcosA-sinA)/sin2Acos2A的值
在△ABC中,A,B,C为它的三个内角,设向量p=(cosB/2,sinB/2),q=(cosB/2,-sinB/2),且向量p与向量q的夹角为π/3.
(1)求角B的大小
(2)已知tanC=根号3/2,求(sin2AcosA-sinA)/sin2Acos2A的值

在△ABC中,A,B,C为它的三个内角,设向量p=(cosB/2,sinB/2),q=(cosB/2,-sinB/2),且向量p与向量q的夹角为π/3.(1)求角B的大小(2)已知tanC=根号3/2,求(sin2AcosA-sinA)/sin2Acos2A的值
(1) p=(cosB/2,sinB/2),q=(cosB/2,-sinB/2),
则IpI=1 IqI=1
p*q=cos²B/2-sin²B/2=cosB
又p*q=IpI*IqIcos(π/3)=1/2
所以cosB=1/2
故B=π/3
(2) 已知tanC=根号3/2
则tanA=-tan(B+C)=-(tanB+tanC)/(1-tanBtanC)=-(√3+√3/2)/(1-√3*√3/2)=3√3
secA=√(1+tan²A)=2√7
(sin2AcosA-sinA)/sin2Acos2A
=sinA(2cos²A-1)/2sinAcosAcos2A
=cos2A/2cosAcos2A
=1/(2cosA)
=secA/2
=2√7/2
=√7
希望能帮到你O(∩_∩)O

在△ABC中,三个内角A、B、C成等差数列,则cos(A+C)的值为 在ABC中,三个内角A、B、C对应的边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列在△ABC中,三个内角A、B、C对应的边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列求证:△ABC为 在三角形ABC中,A,B,C为三个内角.a,b,c为三角的对边,pi/3 在三角形ABC中,A,B,C为三个内角.a,b,c为三角的对边,pi/3 在三角形ABC中,三个内角A、B、C的对边分别为a,b,c,且A、B、C成等差数列,abc成比数 在三角abc中,已知三个内角∠a,∠b,∠c的度数为1:2:求这三个内角的度数. 在△ABC中,三个内角A,B,C,的对边分别为a,b,c,且角A,B,C,成等差数列,边a,b,c,也成等差数列,求证△ABC为等边三角形. 在△ABC中三个内角A,B,C的对边a,b,c成等比数列求内角B的取值范围 已知三角形ABC中,A,B,C为三角形的三个内角,且A 在△ABC中,A,B,C,分别是三角形的三个内角,C=30°则sinA^2+sinB^2-2sinAsinBcosC的值为 如果A、B、C为△ABC的三个内角,则sin(B+C)/2= 在三角形ABC中,三个内角A.B.C对应的边分别为a.b.c,且A.B.C成等差数列,a.b.c成等比数列,证明:三角...在三角形ABC中,三个内角A.B.C对应的边分别为a.b.c,且A.B.C成等差数列,a.b.c成等比数列,证明:三角 在△ABC中,三个内角A,B,C对应边为abc.且cosA,cosB,cosC成等差数列,a,b,c成等比数列,求三角形形状 在△ABC中,已知最大内角A是最小内角C的二倍,三边的长a,b,c是三个连续的正整数,求各边的长 在三角形ABC中,三个内角A,B,C所对的边为a,b,c,已知2B=A+C,A在三角形ABC中,三个内角A,B,C所对的边为a,b,c,已知2B=A+C,a+根号b=2c,求sinC的值. 高中正弦定理在△ABC中,三个内角A.B.C所对的边分别为a.b.c已知2B=A+C,a+根号2b=2c,求sinC的值 已知在三角形abc中,A、B、C为三个内角,a、b、c分别为对应的三条边,π/3 已知在三角形abc中,A、B、C为三个内角,a、b、c分别为对应的三条边,π/3