已知二次函数f(x)=ax^2+bx+c (1)若a>b>c,f(1)=0,是否存在实数m,使f(m)=-a成立时,f(m+3)为正数,并证明(2)若对实数x1,x2,有x1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 04:13:19

已知二次函数f(x)=ax^2+bx+c (1)若a>b>c,f(1)=0,是否存在实数m,使f(m)=-a成立时,f(m+3)为正数,并证明(2)若对实数x1,x2,有x1
已知二次函数f(x)=ax^2+bx+c (1)若a>b>c,f(1)=0,是否存在实数m,使f(m)=-a成立时,f(m+3)为正数,并证明
(2)若对实数x1,x2,有x1

已知二次函数f(x)=ax^2+bx+c (1)若a>b>c,f(1)=0,是否存在实数m,使f(m)=-a成立时,f(m+3)为正数,并证明(2)若对实数x1,x2,有x1
(1)a>b>c,f(1)=a+b+c=0,
∴a>0>c,b=-(a+c).
若存在实数m,使得当f(m)=-a,则
am^2+bm+a+c=0,
△=b^2-4a(a+c)=(a+c)(c-3a)>=0,c-3a0,
f(m+3)-f(m)=a(6m+9)+3b>a,
3(-b土√△)+8a+3b>0,
8a>土3√△,
上式之一成立,
∴存在实数m,使得当f(m)=-a成立时,f(m+3)为正数.
(2)方程f(x)=(1/2)[f(x1)+f(x2)]有两个不同的实数根,
即g(x)=f(x)-(1/2)[f(x1)+f(x2)]=0,
g(x1)=(1/2)[f(x1)-f(x2)],
g(x2)=-(1/2)[f(x1)-f(x2)],
f(x1)≠f(x2),
∴g(x1)*g(x2)