已知p(A)=p(B)=p(C)=1/4,p(AB)=0,p(AC)=p(BC)=1/6,则事件A,B,C全不发生的概率是多少?这个概率论的问题,如果用图形表示出来,怎么表示不出来呢,好像是矛盾的啊,因为A和B的区域不相交,根据P(AC)=P(BC)=1/6,那

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:38:16

已知p(A)=p(B)=p(C)=1/4,p(AB)=0,p(AC)=p(BC)=1/6,则事件A,B,C全不发生的概率是多少?这个概率论的问题,如果用图形表示出来,怎么表示不出来呢,好像是矛盾的啊,因为A和B的区域不相交,根据P(AC)=P(BC)=1/6,那
已知p(A)=p(B)=p(C)=1/4,p(AB)=0,p(AC)=p(BC)=1/6,则事件A,B,C全不发生的概率是多少?
这个概率论的问题,如果用图形表示出来,怎么表示不出来呢,好像是矛盾的啊,因为A和B的区域不相交,根据P(AC)=P(BC)=1/6,那么区域C至少也是1/6+1/6啊,那不就比1/4大了么?太困惑了,

已知p(A)=p(B)=p(C)=1/4,p(AB)=0,p(AC)=p(BC)=1/6,则事件A,B,C全不发生的概率是多少?这个概率论的问题,如果用图形表示出来,怎么表示不出来呢,好像是矛盾的啊,因为A和B的区域不相交,根据P(AC)=P(BC)=1/6,那
嗯 你说的对
题目有错误
证明如下
(A∪B)∩C包含于C
所以P(C)>=P((A∪B)∩C)=P((A∩C)∪(B∩C))
=P(A∩C)+P(B∩C)-P(A∩C∩B∩C)
=P(A∩C)+P(B∩C)-P(A∩B∩C)
代入数据得
1/4>=1/6+1/6-0
1/4>=1/3
矛盾
出题的人没注意

A,B,C至少有一件发生表示为A∪B∪C,全不发生的事件为
-----------
A∪B∪C
相应的概率为1-P(A∪B∪C)
P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)
P(AB)=0,P(ABC)=0
P(A∪B∪C)=1/4+1/4+1/4-0-1/6-1/6+0=3/4-1/...

全部展开

A,B,C至少有一件发生表示为A∪B∪C,全不发生的事件为
-----------
A∪B∪C
相应的概率为1-P(A∪B∪C)
P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)
P(AB)=0,P(ABC)=0
P(A∪B∪C)=1/4+1/4+1/4-0-1/6-1/6+0=3/4-1/3=5/12
事件A,B,C全不发生的概率是1-5/12=7/12
(P(AC),P(BC)分别表示A和C,B和C同时发生的概率,他们和C发生的概率是没关系的,你不能用1/6+1/6就说C发生的概率就是2/3,加起来不表示C发生的概率)

收起

p(A)=p(B)=p(C)=1/4,p(AB)=0,p(AC)=p(BC)=1/6,
则事件A,B,C全不发生的概率是:
p(非A非B非C)=p[非(A+B+C)]=1-p(A+B+C)
=1-[p(A)+p(B)+p(C)+p(AB)+p(AC)+p(BC)]
=1-(3/4-1/6*2)
=7/12

你把P(AC)=P(BC)=1/6换成·1/16就对了 答案是3/8

出题考人的意图正如他们所解.结果是1-(3/4 -1/3)
但是,其中数学代错了.
有时候明白它要考什么就行了,人有失手,常有之事

不对,题目没错,你错了,如果a与b相交那p(c)就何能为1/4

已知P(A)=0.4,P(B)=0.6,P(A)+P(B)=1,P(C)=0.7,P(D)=0.3 求P(A|C)=? 已知P(A)=P(B)=P(C)=1/4,P(AB)=P(AC)=P(BC)=1/8,P(ABC)=1/16,则A,B,C至多有一个发生的概率是多少? 已知p(a)=p(b)=p(c)=1/4,p(ab)=p(bc)=p(bc)=0,p(ac)=1/8.求a,b,c中至少发生一个的概率 已知事件A,B,C,P(A)=P(B)=P(C)=1/4,P(AB)=0,P(AC)=P(BC)=1/16,求A,B,C都不发生的概率.求教... P(A)×P(B)=0.05,P(A)×P(C)=0.1,P(B)×P(C)=0.125.求P(A)/P(B)/P(C), 已知P((AB)反)=1/16,P(AB)=P(A)P(B),P((A反)B)=P(A(B反)),则P(A)= 已知p(A)=1/4,p(B|A)=1/3,求p(AB)? 已知P(A)=P(B)=P(C)=1/4, P(AB)=P(AC)=P(BC)=1/8,P(ABC)=1/16,求恰好有一个发生的概率RT 已知P(A)=P(B)=1/4,P(C)=1/2,P(AB)=1/8,P(BC)=P(AC)=0.试求A,B,C中至少有一个发生的概率. 已知P(A)=P(B)=P(C)=1/4,P(AC)=P(BC)=1/16,P(AB)=0,求事件A,B,C全不发生的概率 已知p(a)=p(b)=p(c)=1/4,p(ac)=p(bc)=1/16,p(ab)=0 求事件A,B,C全不发生的概率 三个条件概率公式的推导有事件,a,b,c.已知p(a+b)=p(a)+p(b)-p(ab)则,p(a+b+c)=? P(AB)=P(A)P(B)? 若A,B为互斥事件,则A P(A) +P(B)1C P(A) +P(B)=1D P(A) +P(B) 已知P(A)=P(B)=P(C)=1/4,P(AC)=P(BC)=1/16,P(AB)=0,已知P(A)=P(B)=P(C)=1/4,P(AC)=P(BC)=1/16,P(AB)=0,求事件A,B,C全不发生的概率 A、B、C是三个随机事件,且P(A)=P(B)=P(C)=1/4,P(AB)=P(AC=1/8),P(BC)=0,求P(A∨B∨C) 已知p(a)=0.5,p(b)=0.5,p(c/b)=p(c/a)=0.02,且事件ab互不相容,求p(c)rt 怎么证明概率问题P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)