直线l与椭圆x^2/4+y^2=1交于p,q两点 已知l过定点(1,0),则弦pq中点轨迹方程是 但求大神给过
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:24:24
直线l与椭圆x^2/4+y^2=1交于p,q两点 已知l过定点(1,0),则弦pq中点轨迹方程是 但求大神给过
直线l与椭圆x^2/4+y^2=1交于p,q两点 已知l过定点(1,0),则弦pq中点轨迹方程是 但求大神给过
直线l与椭圆x^2/4+y^2=1交于p,q两点 已知l过定点(1,0),则弦pq中点轨迹方程是 但求大神给过
设弦pq中点坐标(x,y) ,p(x1,y1),q(x2,y2)
设直线l:y=k(x-1)
联立y=k(x-1)和x²/4+y²=1
消y得:(1+4k²)x²-8k²x+4k²-4=0
由题△>0
韦达定理:x1+x2=8k²/(1+4k²)
x1x2=(4k²-4)/(1+4k²)
x=(x1+x2)/2=4k²/(1+4k²)
y=(y1+y2)/2=[k(x1-1)+k(x2-1)]/2=[k(x1+x2)-2k]/2=-k/(1+4k²)
x/y=4k²/-k
k=-x/4y
k²=x²/16y²
因为x=4k²/(1+4k²) 消k²并化简得4y²+x²-x=0
已知椭圆x^2/8+y^2/4=1,过点P(1,1)做直线l与椭圆交于M,N两点,(1)若点P平分线段MN,试求直线l的方程;(2)设与满足(1)中条件的直线l平行的直线与椭圆交于A,B两点,AP与椭圆交于点C,BP与椭圆交于点
直线l与椭圆x^2/4+y^2=1交于p,q两点,已知l的斜率为1,求pq中点轨迹方程
直线l与椭圆x^2/4+y^2=1交于P,Q两点,已知直线斜率为1,则弦PQ中点的轨迹方程为
椭圆方程为x^2/4+y^2=1 设直线l:y=x+m,若l与椭圆交于P,Q两点,且PQ距离为2,求m值数学--椭圆
高中直线与椭圆习题直线L与椭圆(x^2/4)+y^2=1 交于P,Q两点,已知L的斜率为1,则弦PQ中点轨迹方程是?
已知椭圆C:4x^2+y^2=1及直线l:y=x+m.(1) 求直线l被椭圆C截得的弦的中点的轨迹.(2)若直线l交椭圆C于P.Q...已知椭圆C:4x^2+y^2=1及直线l:y=x+m.(1) 求直线l被椭圆C截得的弦的中点的轨迹.(2)若直线l交椭圆C于
已知椭圆C:4x^2+y^2=1及直线l:y=x+m.(1) 求直线l被椭圆C截得的弦的中点的轨迹.(2)若直线l交椭圆C于P.Q...已知椭圆C:4x^2+y^2=1及直线l:y=x+m.(1) 求直线l被椭圆C截得的弦的中点的轨迹.(2)若直线l交椭圆C于
设动直线L垂直于x轴,且与椭圆x平方+2y平方=4交于A,B两点,P是l上满足PA向量乘PB向量=1的点,求P方程
已知椭圆x^2/4+y^2/2=1,过F1的直线l与椭圆C交于A,B两点,若椭圆C上存在点P,使得向量OP=向量OA+向量OB,求 已知椭圆x^2/4+y^2/2=1,过F1的直线l与椭圆C交于A,B两点,若椭圆C上存在点P,使得向量OP=向量OA+向量O
已知椭圆C:x^2/4+y^2=1,直线过点P(0,2)与椭圆交于A,B两点,且OA*OB=3,求直线l的方程
设动直线l垂直于x轴,且与椭圆x平方+2y平方=4交于A,B两点,P是l上满足PA向量乘PB向量=负1的点(1)求动点...设动直线l垂直于x轴,且与椭圆x平方+2y平方=4交于A,B两点,P是l上满足PA向量乘PB向量=负1的点(
设动直线l垂直于x轴,且与椭圆x平方+2y平方=4交于A,B两点,P是l上满足PA向量乘PB向量=负1的点(1)求动点...设动直线l垂直于x轴,且与椭圆x平方+2y平方=4交于A,B两点,P是l上满足PA向量乘PB向量=负1的点(
直线L过点M(1,1),与椭圆x^2/16+y^2/4=1交于P,Q两点,已知线段PQ的中点横坐标为1/2,求直线L的方程
椭圆X^2/2+Y^2=1的左焦点为F,过点F的直线L与椭圆交于P`Q两点,向量PF=3向量FQ,求直线L的方程
过椭圆x^2+4y^2=16内一点P(1,1)作一直线l,交椭圆于A,B两点,若线段AB恰好被点P平分,求直线l的方程
已知直线l过抛物线y=x²/4的焦点F和F关于直线x+y=0的对称点F',椭圆的中心在坐标原点o焦点在坐标轴上,直线l与椭圆交于P,Q1求直线l方程2若op垂直于OQ PQ=根号10除以2 求椭圆方程
椭圆x^2/4+y^/3=1的右焦点为F,A.B是左右顶点,点P是椭圆上动点,直线PA,PB分别与右准线l交于M,N.求证MF⊥NF
高二数学啊!椭圆与直线方面的.已知椭圆C:4X^2+Y^2=1及直线l:Y=X+m,m∈R.(1)求直线l被椭圆C截得的弦的中点的轨迹.(2)若直线l交椭圆C于P,Q两点,且OP⊥OQ,求直线l的方程.