向量和三角函数的三角形ABC中,角A,B,C的对边分别是a,b,c.向量m=(sinA,cosB),向量n=(cosA,sinB),若bcosA=0.5c,且a²+b²+c²+根号2ac=2,试求a²+b²+c²的最小值是a²+b²+c²+√2(ac
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:48:13
向量和三角函数的三角形ABC中,角A,B,C的对边分别是a,b,c.向量m=(sinA,cosB),向量n=(cosA,sinB),若bcosA=0.5c,且a²+b²+c²+根号2ac=2,试求a²+b²+c²的最小值是a²+b²+c²+√2(ac
向量和三角函数的
三角形ABC中,角A,B,C的对边分别是a,b,c.向量m=(sinA,cosB),向量n=(cosA,sinB),若bcosA=0.5c,且a²+b²+c²+根号2ac=2,试求a²+b²+c²的最小值
是a²+b²+c²+√2(ac)=2,不好意思··
向量和三角函数的三角形ABC中,角A,B,C的对边分别是a,b,c.向量m=(sinA,cosB),向量n=(cosA,sinB),若bcosA=0.5c,且a²+b²+c²+根号2ac=2,试求a²+b²+c²的最小值是a²+b²+c²+√2(ac
把bcosA=0.5c用余弦定理代入得到a²=b²,代入a²+b²+c²+√(2ac)=2得到2a²+c²+√(2ac)=2,这是已知.
要求的a²+b²+c²也可写成2a²+c²(=2-√(2ac)).
利用基本不等式,2a²+c²>=(2√2)*ac,(当√2a=c时取等号,注意a>0,c>0,我觉得这里a,c的取值范围很可能用到你第一二题结论,不过既然你没给出来,我就默认是a>0,c>0),这样2a²+c²+√(2ac)=2就可写成(2√2)*ac+√(2ac)=2,然后我们把ac看做整体,可求出具体值,ac有了,2-√(2ac)就有了,结果出来了,再利用取等号条件√2a=c可求出a,c的值.
你给那两个相量是什么意思,貌似好像用不到这个条件吧?向量是题目中的条件 应该是解12两个小问的我发的问题只是第3个问 跟12没关系嗯,我也是大一的,但是勉强还能记起一些,我帮你想想,刚才我算了一下,有一点眉目了,等我算出来了就打上来,谢谢啦~~~晕!!sorry~嗯,下面那个大哥的方法对了,就是要改一下你该的那个条件。...
全部展开
你给那两个相量是什么意思,貌似好像用不到这个条件吧?
收起
这个,以前会做,上大学了,反而不会了,唉