设等差数列{an}的公差d≠0,数列{bn}为等比数列,若a1=b1=a,a3=b3,a7=b5(1)若an=bm,n,m∈N*,求n与m之间的关系(2)将数列{an},{bn}中的公共项按由小到大的顺序排列组成一个新的数列{cn},是否存在正整数p,q,r(p

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 10:50:52

设等差数列{an}的公差d≠0,数列{bn}为等比数列,若a1=b1=a,a3=b3,a7=b5(1)若an=bm,n,m∈N*,求n与m之间的关系(2)将数列{an},{bn}中的公共项按由小到大的顺序排列组成一个新的数列{cn},是否存在正整数p,q,r(p
设等差数列{an}的公差d≠0,数列{bn}为等比数列,若a1=b1=a,a3=b3,a7=b5
(1)若an=bm,n,m∈N*,求n与m之间的关系
(2)将数列{an},{bn}中的公共项按由小到大的顺序排列组成一个新的数列{cn},是否存在正整数p,q,r(p<q<r)使得p,q,r和(cp)+p,(cq)+q,(cr+r)均成等比数列?说明理由
第三题是(cr)+r,刚刚打错了

设等差数列{an}的公差d≠0,数列{bn}为等比数列,若a1=b1=a,a3=b3,a7=b5(1)若an=bm,n,m∈N*,求n与m之间的关系(2)将数列{an},{bn}中的公共项按由小到大的顺序排列组成一个新的数列{cn},是否存在正整数p,q,r(p

An=A1+(n-1)d Bm=B1*q^(m-1) (此处楼上打错)
因为A1=B1;A3=B3;A7=B5则可得 A1(1-q^2)=2d
A1(1-q^4)=6d比得
q^4-3q^2+2=0
(q^2-1)(q^2-2)=0
且2d=A1(q^2-1)因为公差不为零,所以q^2=2,
q=2^(1/2) (取 q>0,因 n>0)
d=A1/2带入An=Bm可得:A1+(n-1)(A1/2)=A1*q^(m-1)化简1/2*(1+n)= q^(m-1)即可解得
n=2*(2)^((m-1)/2) -1
(2)
将数列{As},{Bm}中的公共项按由小到大的顺序排列组成一个新的数列{Cn},m为奇值,
公共项 Bm 为等比数列 (m为奇值) ,公共项 Cn=As=Bm,
As=a+(s-1)*a/2
Bm=a* (2)^((m-1)/2)
As=Bm=Cn
故Cn 为等比数列


An=A1+(n-1)d Bm=B1*q^m因为A1=B1;A3=B3;A7=B5则可得 A1(1-q^2)=2d
A1(1-q^4)=6d比得
q^4-3q^2+2=0
(q^2-1)(q^2-2)=0
且2d=A1(q^2-1)因为公差不为零,所以q^2=2,
d=A1/2带入An=Bm可得:A1+(n-1)(A1/2)=A1*q^(m-1)化简1/2*(1+n)= q^(m-1)即可解得

设等差数列an的公差为d,若数列{2^(a1an)}为递减数列,则:A d>0 B d0 D a1d 设an是一个公差为d(d≠0)的等差数列,它的前10项和s10=110且a4=8求公差d的值和数列an的通项公式. 数列求证题设等差数列{An}的公差为d,d>0,数列{B}是公比为q等比数列,且B1=A1>0.若A2=B2,求证:当n>2时,An 设等差数列{an}的公差d≠0,数列{bn}为等比数列,若a1=b1,b2=a3 b3=a2,则bn的公比为 好难啊已知等差数列{an}的首项a1=0 公差d≠0,bn=2^an Sn是数列bn的前n项和求Sn设Tn=Sn/bn 当d>0,求limTn 已知数列an是等差数列,公差d≠0,切a1,a3,a4成等比数列,(1)求a5的值 从数列{an}中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{an} 的一个子数列,设数列{an}是首项为a1,公差为d(d≠0)的无穷等差数列(即项数有无限项) (1) 若a1,a2,a5成等比数列, 数列{an}是公差d≠0的等差数列,数列{bn}是等比数列,若a1=b1在公差为d(d不等于0)的等差数列(an)和公比为q的等比数列(bn)中,已知a1=1,b1=1,a2=b2,a8=b3.1.求数列{an}的公差d和数列{bn}的公比q2.是否存在常 等差数列{an}的公差d 等差数列{an}的公差d 等差数列an的公差d 等差数列{an}的公差d 设等差数列an,公差d≠0,它的前10项S10=110,且a2^2=a1*a4,求(1)求证:a1=d(2)求公差d的值及数列an的通项公式(3)求数列an的前n项和Sn 设等差数列an的公差为d不等于0,前n项和为Sn.则Sn为递增数列的充分必要条件是 设{an}是一个公差为d(d≠0)的等差数列,它的前10项s10=110且a1,a2,a4成等差数列.求:(1)证明a1=d (2)求公差D的值和数列{an}的通项公式. 已知等差数列{an}的公差d不等于0,数列{bn}是等比数列,a1=b1=1,a2=b2,a4=b4已知等差数列{an}的公差d不等于0,数列{bn}是等比数列,a1=b1=1,a2=b2,a4=b41,求出数列{an}与{bn}的通项公式2,设cn=an*bn,求 设数列{an}是公差为d(d>0)的等差数列,Sn为{an}的前n项和,已知S4=24,a2乘a3=35,(1)求数列{an}...设数列{an}是公差为d(d>0)的等差数列,Sn为{an}的前n项和,已知S4=24,a2乘a3=35,(1)求数列{an}的通项 高中数学必修5第二章有关数列试题设{an}是公差为d的等差数列(d≠ 0),它的前十项和是S10=110,且a1 a2 a4成等比数列.(1)证明a1=d. (2)球公差d的值和数列{an}的通项公式