设数列{an}的前n项和Sn=n^2+2n (1)求证{an}是等差数列,并求它的通项公式 (2)设bn=2^an,求证{bn}是等比数列,并求它的前n项和

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 08:40:58

设数列{an}的前n项和Sn=n^2+2n (1)求证{an}是等差数列,并求它的通项公式 (2)设bn=2^an,求证{bn}是等比数列,并求它的前n项和
设数列{an}的前n项和Sn=n^2+2n (1)求证{an}是等差数列,并求它的通项公式 (2)设bn=2^an,
求证{bn}是等比数列,并求它的前n项和

设数列{an}的前n项和Sn=n^2+2n (1)求证{an}是等差数列,并求它的通项公式 (2)设bn=2^an,求证{bn}是等比数列,并求它的前n项和
证明:(1)an=Sn-Sn-1=n^2+2n -(n-1)^2-2(n-1)=2n+1(n≥1)
又S1=a1=3,an-an-1=2
所以{an}是是以公差为2的等差数列,通项公式为an=2n+1(n≥1).
(2)bn=2^(2n+1),所以bn-1=2^(2n-1)
所以bn/bn-1=4
所以b1=8,bn=8×4^(n-1) (n≥1)
所以{an}是是以公比为4的等比数列,通项公式为bn=8×4^(n-1) (n≥1)
Sn=8×[(4^n)-1]/3.

a1=s1=1^2+2*1=3
sn=n^2+2n
s(n-1)=(n-1)^2+2(n-1)
=n^2-2n+1+2n-2
=n^2-1
an=sn-s(n-1)
=n^2+2n-(n^2-1)
=n^2+2n-n^2+1
=2n+1
所以{an}是等差数列,an=2n+1
bn=2^an
=2^(2n+1)...

全部展开

a1=s1=1^2+2*1=3
sn=n^2+2n
s(n-1)=(n-1)^2+2(n-1)
=n^2-2n+1+2n-2
=n^2-1
an=sn-s(n-1)
=n^2+2n-(n^2-1)
=n^2+2n-n^2+1
=2n+1
所以{an}是等差数列,an=2n+1
bn=2^an
=2^(2n+1)
b(n-1)=2^a(n-1)
=2^(2n-1)
bn/b(n-1)
=2^(2n+1)/2^(2n-1)
=2^[(2n+1)-(2n-1)]
=2^2
=4
所以{bn}是以4为公比的等比数列
sn=b1+b2+...+bn
=2^3+2^5+...+2^(2n+1)
=8*(1-4^n)/(1-4)
=8*(1-2^2n)/(-3)
=2^(2n+3)/3-8/3

收起

数列{an},中,a1=1/3,设Sn为数列{an}的前n项和,Sn=n(2n-1)an 求Sn 设数列{an}的前n项和为sn=n^2,求a8 求:设数列 {an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn一n²,n∈求:设数列 {an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn一n²,n∈N 设数列an的前n项和为Sn,若Sn=1-2an/3,则an= 已知数列{an}的通项公式an=log2[(n+1)/(n+2)](n∈N),设其前n项的和为Sn,则使Sn 设数列an的首项a1等于1,前n项和为sn,sn+1=2n设数列an的首项a1等于1,前n项和为sn,sn+1=2n 设数列{an}中前n项的和Sn=2an+3n-7则an= 设数列{an}中前n项的和Sn=2an+3n-7,则an= 设数列an的前n项和Sn.且Sn=2an-2,n属于正整数,(1)求数列an的通项公式,(2)设cn=n/an,求数列的前n项和Tn设数列an的前n项和Sn.且Sn=2an-2,n属于正整数,(1)求数列an的通项公式,(2)设cn=n/an,求数列的前n项和Tn 设数列{an}的前n项和为Sn,已知ban-2n=(b-1)Sn 数列an的前n项和Sn满足:Sn=2n-an 求通项公式 已知数列{an}的前n项和为Sn,an+Sn=2,(n 设数列{an}的前n项和为Sn,若a1=1,Sn=2an+Sn+(n∈N+),则a6= 设Sn是数列an的前n项和,已知a1=1,an=-Sn*Sn-1,(n大于等于2),则Sn= 设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096,)求{an}的通项公式设数列{log(2)A(n)},前n项和是Tn(n),(2)是下角标 设数列an的前n项和为Sn,且2an=Sn+2n+1 求a1 a2 a3 求证:数列{an+2}是等比数列 求数列{n*an}的前n项和Tn 设数列an的前n项和为Sn,且2an=Sn+2n+1 求a1 a2 a3 求证:数列{an+2}是等比数列 求数列{n*an}的前n项和Tn 设数列{an}的前n项和为Sn=3n^2-65n 求数列{IanI}的前n项和 Tn