1/1*3+1/3*5+1/5*7+1/7*9……+1/99*101等于多少?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:18:49
1/1*3+1/3*5+1/5*7+1/7*9……+1/99*101等于多少?
1/1*3+1/3*5+1/5*7+1/7*9……+1/99*101等于多少?
1/1*3+1/3*5+1/5*7+1/7*9……+1/99*101等于多少?
这个算式可以分解开来看,比如:
1/1*3=[(3-1)/(1*3)]*1/2=[3/(1*3)-1/(1*3)]*1/2
=[3/3-1/3]*1/2
=(1-1/3)*1/2
1/3*5=[(5-3)/(3*5)]*1/2=[5/(3*5)-3/(3*5)]*1/2
=[5/15-3/15]*1/2
=(1/3-1/5)*1/2
每个式子都像这样划出来,然后提个1/2这个公因子,其余的相互加减,会发现中间的各个数都抵消了,那么整个式子可这样算:
=(1-1/3+1/3-1/5+1/5-1/7+.+1/99-1/101)*1/2
=(1-1/101)*1/2
=100/101 *1/2
=50/101
100/199
1/2(1-1/3+1/3-1/5+...+1/n-1/(n+2))
1/(1*3)=1/3=0.5*(1-1/3)
以下相同
原式=(1/2)*(1-1/3+1/3-1/5+...+1/99-1/101)
=(1/2)*(1-1/101)
=50/101
1-3+5-7+...
(1+1/3+1/5+1/7)*(1/3+1/5+1/7+1/9)-(1+1/3+1/5+1/7+1/9)*(1/3+1/5+1/7) 简算(1+1/3+1/5+1/7)*(1/3+1/5+1/7+1/9)-(1+1/3+1/5+1/7+1/9)*(1/3+1/5+1/7) 简便计算
1/1*3+1/1*3*5+1/1*3*5*7+1/1*3*5*7*9-73/945
1/3+1/5+1/7+.+1/2n+1
(1/3+1/5+1/7)*(1/5+1/7+1/9)-(1/3+1/5+1/7+1/9)*(1/5+1/7)=?
1 1 1 1 1 3 5 7 1 5 13 25 1 7 25 why
1/1×3+1/3×5+1/5×7+1/7×9.+1/2011×2013
简算:1/1*3+1/3*5+1/5*7+1/7*9+1/9*11
1/1*3+1/3*5+1/5*7+1/7*9+...1/17*19=
计算1/(1×3)+1/(3×5)+1/(5×7)+1/(7×9)+.+1/(19×21)
1/1×3+1/3×5+1/5×7+1/7×9+.+1/2013×2015
1/1*3+1/3*5+1/5*7+1/7*9+.+1/101*103
帮帮忙1/1*3+1/3*5+1/5*7+1/7*9+...1/99*101
1/1*3+1/3*5+1/5*7+1/7*9+1/49*51=
计算:1/1×3+1/3×5+1/5×7+1/7×9``````+1/2001×2003
(1*3)/1+(3*5)/1+(5*7)/1+(7*9)/1+(9*11)/1
1/1*3+1/3*5+1/5*7+1/7*9+1/9*11
(1*3)/1+(3*5)/1+(5*7)/1+(7*9)/1+(9*11)/1